• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stealth-care system: Scientists test ‘smart’ red blood cells to deliver antibiotics that target specific bacteria

Bioengineer by Bioengineer
October 31, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physicists at McMaster University have identified a natural delivery system which can safely carry potent antibiotics throughout the body to selectively attack and kill bacteria by using red blood cells as a vehicle.

Testing a new drug delivery system

Credit: Ella Marushchenko

Physicists at McMaster University have identified a natural delivery system which can safely carry potent antibiotics throughout the body to selectively attack and kill bacteria by using red blood cells as a vehicle.

The platform, described in a new paper in the journal ACS Infectious Diseases, could help to address the ongoing antibiotic resistance crisis, say the scientists. They modified and then tested red blood cells as a carrier for one of the world’s only remaining resistance-proof antibiotics: Polymyxin B (PmB), widely considered a treatment of last resort due to its toxicity and harmful side effects, which include kidney damage.  

It is used to fight particularly dangerous and often drug-resistant bacteria such as E. coli, which is responsible for many serious conditions such as pneumonia, gastroenteritis and bloodstream infections. 

Researchers have developed a way to open red blood cells and remove the inner components, leaving only a membrane—known as a liposome—which can be loaded with drug molecules and injected back into the body. 

The process also involves coating the outside of the membrane with antibodies, allowing it to stick to bacteria and deliver the antibody safely.

“Essentially, we are using red blood cells to conceal this antibiotic within so it can no longer interact or harm healthy cells as it passes through the body,” explains Hannah Krivic, a graduate student of biophysics at McMaster and lead author of the study. She conducted the work with undergraduate students Ruthie Sun and Michal Feigis, and Thode postdoctoral fellow Sebastian Himbert, all based in the Department of Physics & Astronomy. 

 

“We designed these red blood cells so they could only target bacteria we want them to target,” says Krivic.

The team, supervised by Maikel Rheinstädter, a professor in the Department of Physics & Astronomy, had also focused on red blood cells in previous work (hyperlink) because they are stable, sturdy and have a naturally long lifespan, approximately 120 days, giving them ample time to reach different target sites. 

“With many traditional drug therapies there are challenges. They tend to degrade rapidly when they enter our circulation system and are randomly distributed throughout our bodies,” Rheinstädter explains.  “We often have to take higher doses or repeated doses, which increases exposure to the drug and heightens the risk of side effects.”

Scientists are working on additional applications of the technology, including its potential as a platform to deliver drugs across the blood-brain barrier and directly to the brain, helping patients who suffer from Alzheimer’s or depression, for example, to receive treatment much more quickly and directly.  

 



Journal

ACS Infectious Diseases

DOI

10.1021/acsinfecdis.2c00017

Method of Research

Experimental study

Article Title

Erythro-PmBs: A Selective Polymyxin B Delivery System Using Antibody-Conjugated Hybrid Erythrocyte Liposomes

Article Publication Date

29-Sep-2022

COI Statement

The 1005 funders had no role in study design, data collection, analysis, 1006 decision to publish, or preparation of the manuscript.

Share12Tweet8Share2ShareShareShare2

Related Posts

Dihydromyricetin Shields Against Spinal Cord Injury Damage

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025
Key Genes Identified in Nutrient Stress During Virus Infection

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

NYU Abu Dhabi Researchers Identify Unique Survival Strategies Adopted by Fish in the World’s Warmest Waters

August 26, 2025

Catfish Expert Releases Updated Volume on Catfish Biology and Evolution

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DOD Awards Research Grant to MMRI Scientist Developing Advanced Monitoring Techniques for Transplant Health in Wounded Veterans

Dihydromyricetin Shields Against Spinal Cord Injury Damage

University of Tennessee Partners on NSF Grants to Enhance Outcomes via AI

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.