• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Stealing from the body: How cancer recharges its batteries

Bioengineer by Bioengineer
October 5, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research published today uncovers how the blood cancer 'steals' parts of surrounding healthy bone marrow cells to thrive, in work that could help form new approaches to cancer treatment in the future.

Researchers at the University of East Anglia (UEA), funded by the Rosetrees Trust and The Big C Charity, found that healthy bone marrow stromal cells were made to transfer their power-generating mitochondria to neighbouring cancer cells, effectively 'recharging' the acute myeloid leukaemia (AML) and supporting the leukaemia to grow.

AML has been found to act in a parasitic way by first generating oxygen-deprived conditions in the bone marrow which then stimulates the transfer of healthy mitochondria from the non-cancerous cells to the leukaemia cells.

The study, published on the cover of the journal Blood today also identified how and why the mitochondria are transferred and discusses the potential impact this could have on future treatment and study of cancer.

Dr Stuart Rushworth from UEA's Norwich Medical School said: "Our results provide a first in the study of cancer mitochondrial transfer mechanism. We have clearly shown that the cancer cell itself drives transfer by increasing oxidative stress in the neighbouring non-malignant donor cells.

"Moreover, mitochondria which move from the bone marrow stromal cells to the AML blasts are functionally active, showing that the AML blast is using this biological phenomenon to its metabolic advantage."

An enzyme found in the AML cell membrane was shown to be responsible for creating the conditions necessary for mitochondrial transfer to occur. Researchers established that the enzyme called NOX-2 generated superoxide which drives this transfer. The transfer takes place through AML-derived tunnelling nanotubes (TNTs) which link the cancer cells directly to the surrounding healthy cells.

Furthermore by inhibiting NOX-2, researchers showed a reduction in mitochondrial transfer took place which limited how much energy the AML cells could generate and resulted in slower cancer growth.

Dr Rushworth said: "It was not previously known what stimulates mitochondrial transfer in AML or any cancer, and determination of the controlling stimulus is an essential first step if this biological function is to be exploited therapeutically in the future."

###

The study 'NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts' is published in print in the journal Blood, DOI: 10.1182/blood-2017-03-772939.

Media Contact

Laura Potts
[email protected]
44-016-035-91069
@uniofeastanglia

http://comm.uea.ac.uk/press

Share12Tweet7Share2ShareShareShare1

Related Posts

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

September 21, 2025

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.