• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Starch from yeast

Bioengineer by Bioengineer
November 23, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Starch is only produced by plants and algae. Now, it can also be produced by yeast – or, at any rate, by the yeasts in the labs of the group led by Samuel Zeeman, Professor of Plant Biochemistry at ETH Zurich's Institute of Agricultural Sciences. The researchers have succeeded in implanting yeast with the machinery that plants use to create this stored form of glucose. "It's an unprecedented innovation," says Zeeman.

Transferring plant enzymes

To achieve this aim, Barbara Pfister, the researcher spearheading the project, took the blueprints for seven different enzymes involved in starch synthesis from the genome of thale cress (Arabidopsis thaliana). They then implanted these into the yeast's genome, from which they also removed all enzymes involved in the synthesis of glycogen, the storage form of glucose in yeast, to prevent these enzymes from interfering with the synthesis of starch.

In total, the researchers generated over 200 strains of yeast, some of them with all seven enzymes and others with various reduced sets of them. Accordingly, the strains produced either starch that closely resembled that of Arabidopsis or no starch at all – or starch products with varying degrees of modification.

Yeast actually produces starchThe researchers used various methods to investigate what exactly was produced by the yeast. In addition to the classical iodine test and various well-established imaging processes, the new technique of cryo X-ray ptychographic tomography developed at the Paul Scherrer Institute was applied here to determine the mass density of the synthesized products inside the yeast.

The result: strains containing all seven enzymes produced starch with only minimal differences from Arabidopsis starch. However, what was surprising were the products of strains in which one or more enzymes were missing: depending on the combination, some of these strains nevertheless produced some type of starch.

Starch by a roundabout route

"Starch synthesis is not a linear process," explains Zeeman. "If an enzyme is missing, the ones that are left keep working anyway and just build a slightly different product." The researchers were able to show that, depending on the combination of the other enzymes, starch synthesis also works without debranching enzymes. These enzymes remove excess branching in the sugar chains produced during starch synthesis and were previously proposed to be indispensable to starch formation.

"At present, the yeast system is purely a research tool," says the ETH professor. He explains that it allows starch synthesis to be simulated and influenced, as well as allowing more detailed investigation of the individual roles of participating enzymes and of the formation of starch's complicated structure. "Doing these studies in yeast is far faster and simpler than in plants," emphasises Zeeman. Asked about future applications, he adds: "Of course, it would be possible to try out novel starch modifications in the yeast system to attempt to improve starch properties for certain areas of application."

Taking a new direction with yeast

This SNF-funded project saw Zeeman's group work with yeast for the first time. "It worked remarkably well", he says. Zeeman and Pfister now want to use the yeast system to investigate starch synthesis in greater detail at the system level. To this end, the group has started working with mathematical modelling specialists in order to simulate the process in a computer model.

Starch is an important constituent of foodstuffs such as maize, rice or potatoes. It is of major interest for the manufacture of biodegradable materials, and finds use in many unexpected places, such as in coating for paper. As such, starch is being constantly optimised for its various applications.

###

Reference

Pfister B, Sánchez-Ferrer A, Diaz A, Lu K, Otto C, Holler M, Razvi Shaik F, Meier F, Mezzenga R, Zeeman SC. Recreating the Synthesis of Starch Granules in Yeast. Elife, published on November 22, 2016, DOI 10.7554/eLife.15552

Media Contact

Sam Zeeman
[email protected]
41-446-328-275
@ETH_en

http://www.ethz.ch/index_EN

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Optimizing Surgical Heart Valve Design with Novel Polymer

November 18, 2025

Predicting Outcomes for ECMO Patients in Septic Shock

November 18, 2025

AI Advances Brain-Wide Histopathology in Synucleinopathy Models

November 18, 2025

Optogenetics: From Discovery to Human Therapy Roadmap

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Surgical Heart Valve Design with Novel Polymer

Predicting Outcomes for ECMO Patients in Septic Shock

AI Advances Brain-Wide Histopathology in Synucleinopathy Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.