• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Staph uses nitric oxide enzyme to colonize noses

Bioengineer by Bioengineer
November 28, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Brian Donohue/University of Washington

Staph bacteria colonize nasal passages through a newly discovered function for a primeval biochemical mechanism.

The interior of the nose is a prime dwelling place for some forms of staph. More than one-third of the population has a chronic presence of Staphylococcus aureus in their nostrils and sinuses. From there, it can get onto the hands and other skin areas.

Like many bacteria, Staphylococcus aureus makes the enzyme nitric oxide synthase. In other living things that manufacture nitric oxide, the simple molecule controls many complex biological responses. In people, for example, it mediates blood pressure, nerve signals and sexual arousal.

"Much is known about nitric oxide in human physiology," noted Dr. Ferric Fang, professor of laboratory medicine and microbiology at the University of Washington School of Medicine. The UW Medicine researcher added, however, that the effects of nitric oxide production in bacteria have been much less clear.

Fang, along with Traci Kinkel, UW acting instructor of laboratory medicine, and a team of scientists, have been looking at this question. Their most recent findings on the essential role of the enzyme nitric oxide synthase in successful colonization by S. aureus are reported Nov. 28 in Nature Microbiology.

Kinkel explained that S. aureus typically grows into a thick group or biofilm. If the bacteria pack densely into a confined location, eventually most of the available oxygen will be consumed.

This situation can arise when staph tries to take hold and multiply inside the nose. Mucus in the nose also limits the diffusion of oxygen.

As oxygen becomes scarce, Kinkel said, the small amount of nitric oxide produced by the bacteria further restricts aerobic respiration in an effort to reduce oxygen use. This leads to the bacteria transitioning to nitrate consumption, or microaerobic respiration, to maintain energy in the low-oxygen environment.

The researchers outlined the biochemical activities stemming from nitric oxide synthase production. These regulate the transport of electrons in the pathogen's cell membrane, and thereby maintain energy from concentration gradients across the membrane.

"We believe that this elegant mechanism is likely to represent the original, primordial function of enzymatic nitric oxide production in nature," Fang said. The essential bacterial mechanism appears to be evolutionarily conserved in some types of cell receptor signaling in mammals.

Also, the researchers said, in view of the many pathogenic and environmental bacteria that produce the enzyme nitric oxide synthase, and the ubiquity of low-oxygen environments in the natural world, this mechanism is likely to be a widespread bacterial response to limited oxygen.

As a survival method, the mechanism may contribute to the virulence and staying power of the disease-inducing staphylococcus bacteria. It also appears to play a role in resistance to the antibiotic daptomycin, which targets the bacterial cell membrane.

The research results suggest novel strategies for preventing staphylococcal infection by interfering with bacterial nitric oxide synthase.

Seeking alternative staph-fighting approaches is especially important now that serious strains of the bacteria no longer respond readily to strong antibiotics.

"Staphylococcus aureus colonizes an estimated two billion persons worldwide and has become a leading cause of skin, respiratory, and blood stream infections," the researchers wrote. Deaths from methicillin-resistant S. aureus (MRSA) now exceed those caused by Human Immunodeficiency Virus (HIV) in the United States.

###

The research reported in Nature Microbiology under the title, "An Essential Role for Bacterial Nitric Oxide Synthase in Staphylococcus aureus Electron Transfer and Colonization," was supported by National Institute of Health grants AI44486, AI55396, and AI123124.

Media Contact

Leila Gray
[email protected]
206-685-0381
@hsnewsbeat

http://hsnewsbeat.uw.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

STN1 Drives Pancreatic Cancer Metastasis via ZEB1

STN1 Drives Pancreatic Cancer Metastasis via ZEB1

August 21, 2025
Anxiety, Anxiety Medications Linked to Parkinson’s Risk

Anxiety, Anxiety Medications Linked to Parkinson’s Risk

August 21, 2025

Celebrating 30 Years of Nanoimprint Lithography: Pioneering a New Era in Nanomanufacturing

August 21, 2025

Combination Therapy Enhances Treatment Outcomes in Advanced Triple-Negative Breast Cancer

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

STN1 Drives Pancreatic Cancer Metastasis via ZEB1

Anxiety, Anxiety Medications Linked to Parkinson’s Risk

Celebrating 30 Years of Nanoimprint Lithography: Pioneering a New Era in Nanomanufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.