• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stanford researchers observe unexpected flipper flapping in humpback whales

Bioengineer by Bioengineer
July 10, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When Jeremy Goldbogen, an assistant professor of biology at Stanford University, affixed recording devices to humpback whales, it was with the hope of learning more about how the animals move in their natural environment – deep underwater and far from human's ability to observe.

However, in the process of reviewing footage of the whales feeding in groups, he and his team noticed something unexpected. In rare instances, the cameras caught whales flapping their foreflippers like penguins or sea lions, but completely unlike anything seen before in whales.

"Whales power their swimming by using their muscular tails," said Paolo Segre, a postdoctoral researcher. "However, in this case we have documented the first example of a whale flapping its flippers to move forward, using a motion similar to a bird flapping its wings."

This novel movement, detailed July 10 in Current Biology, helps the researchers understand more about the abilities and anatomy of these mysterious animals and could also inform bio-inspired design.

Unique flippers

The foreflippers of humpbacks are bumpy and slender compared to the much shorter, smoother front flippers of other whales. They are so distinctive, in fact, that the scientific name for humpback whales, Megaptera novaeangliae, means "big-winged New Englander."

Because scientists have thought foreflippers were mainly involved in steering, it makes sense that the unusual flipper shape could explain the humpback's famously skillful maneuvering. Video tagging technology, like that developed by the Goldbogen Lab, is relatively new, so scientists have only recently had the opportunity to test and expand on this hypothesis.

"In the past, researchers have looked at the structure of the whale flipper from dead animals," said Goldbogen, who carries out his research at Hopkins Marine Station and is senior author of the paper. "But for the first time we can see how this structure actually is used in a living whale – in its natural environment."

From their footage, the group estimated the hydrodynamic forces produced by the flapping and found the whales were generating a significant amount of thrust. They also found this behavior was extremely rare. In hundreds of hours of video, some of which included groups of about 200 whales, they only saw the foreflipper flapping twice, which may be why they're the first to report it.

"It is likely very energetically expensive and only used for short bursts of acceleration," said Segre, who is lead author of the paper. "It is probable that humpback whales are the only species that can do this because of the length and extensive range of motion of their flippers."

The humpback whale is the most studied of all the whales, said Goldbogen, but, by revealing a new purpose for its namesake appendage, this work demonstrates we have much more to learn about this species.

Bio-inspiration

In addition to telling us more about these mysterious giants of the sea, research on whale biomechanics could be used by scientists in other fields. Even our best aquatic technology has yet to catch up to whales' ability to move their enormous bodies quickly and precisely or their extremely efficient long-distance migrations.

"By understanding how the body flexes, and how the flippers and flukes are used to maneuver, we will have a better understanding of the mechanisms used by the largest animals to attain high-performance locomotion," Goldbogen said. "Therefore, our research has implications for the biomimetic design applications from enhanced performance of animals to mechanized submersibles."

The group's next step is to create a 3-D movement and 360-degree panoramic video version of their tag that would capture a whale's entire body along with the environment around it.

###

Co-authors of this paper include scientists from the Department of Environmental Affairs in Cape Town, South Africa, and from Cape Peninsula University of Technology in Cape Town. Goldbogen is also a member of Stanford Bio-X and an affiliate of the Stanford Woods Institute for the Environment.

This research was funded by the U.S. Office of Naval Research.

Media Contact

Taylor Kubota
[email protected]
650-724-7707
@stanford

ZZZ – DO NOT EDIT – News Page

http://news.stanford.edu/press/view/15386

Share12Tweet7Share2ShareShareShare1

Related Posts

Lead-Resistant Lizards in New Orleans Offer Insights into Fighting Lead Poisoning

Lead-Resistant Lizards in New Orleans Offer Insights into Fighting Lead Poisoning

August 20, 2025
blank

Aquarius Helicase Boosts HIV-1 Integration in R-Loops

August 20, 2025

New analysis across the tree of life reveals most species evolved during bursts of rapid diversification

August 20, 2025

For Apes, What’s Out of Sight Stays on Their Mind

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gas-Driven Atomic Dynamics Boost Oxide Reducibility

Harnessing Positive Externalities for Multidimensional Resilience

WNT Signaling: Evolutionary Roots and Cancer Links

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.