• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 25, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Stability improvement under high efficiency — next stage development of perovskite solar cells

Bioengineer by Bioengineer
April 10, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

With efficiency of perovskite solar cells (PSCs) overpassing 23%, to realize their commercialization, the biggest challenge now is to boost the stability to the same level as conventional solar cells. Thus, tremendous effort has been directed over the past few years toward improving the stability of these cells. Various methods were used to improve the stability of bulk perovskites, including compositional engineering, interface adjustment, dimensional manipulation, crystal engineering, and grain boundary decoration. Diverse device configurations, carrier transporting layers, and counter electrodes were investigated. To compare the stability of PSCs with clarifying the degradation mechanism, diverse characterization methods were developed. Overall stability of PSCs has become one central topic for the development of PSCs.

Recently, a review article, written by professor Zhijun Ning from Shanghai Technological University, Professor Hongwei Han from Huazhong University of Science and Technology , Professor Qingbo Meng from Institute of Physics, Chinese Academy of Sciences, et al. summarizes the state-of-the-art progress on the improvement of device stability and discusses the directions for future research, hoping to provide an overview of the current status of the research on the stability of PSCs and guidelines for future research.

The authors tell us that although considerable improvement in the stability of PSCs has been realized, particularly using carbon electrodes, the combination of long-term stability and high efficiency still remains unsolved and needs intensive effort to address this challenge.

As for perovskite materials, the exploration of surface terminal groups to prevent the formation of dangling bonds is an important strategy. Considering the large amount of molecules that can be investigated, it is a promising direction to search for new molecules that can better protect the perovskite surface.

In terms of device stability, the use of alternative electrodes, such as carbon paste and oxides, provides another strategy to avoid the abovementioned problems. For this structure, the challenge now might be to improve the efficiency. Strategies, such as improving the conductivity and reducing light loss, can be considered.

For characterizations, Understanding the mechanism via comprehensive and effective characterization is the basis for improving the stability. The mechanism for device degradation is complicated, particularly under electrical field and light illumination. Different methods have been employed to test the stability of PSCs, leading to a lack of reliability or comparability among the reported results; this is another issue. Therefore, commensurable protocols must be developed for evaluating the stability of PSCs. Developing standard test protocols is the first step toward realizing fast and reliable development in this area.

###

See the article: Danni Yu, Yue Hu, Jiangjian Shi, Haoying Tang, Wenhao Zhang, Qingbo Meng, Hongwei Han, Zhijun Ning, He Tian. Stability improvement under high efficiency–next stage development of perovskite solar cells. Sci. China Chem., 2019, 62, https://doi.org/10.1007/s11426-019-9448-3

http://engine.scichina.com/doi/10.1007/s11426-019-9448-3 https://link.springer.com/article/10.1007%2Fs11426-019-9448-3

Media Contact
Zhijun Ning
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s11426-019-9448-3

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Route to Strychnos Alkaloids via Thiophene Cycloadditions

January 23, 2026
Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Venetoclax’s Toxicity vs. Efficacy in Patients

New Framework Classifies Unprofessional Behaviors in Healthcare

Semaphorin 3A Shields Against Aortic Aneurysm Dissection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.