• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Squeezing light into new miniature devices

Bioengineer by Bioengineer
November 28, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: IBS

Do you think your computer is fast enough? Think again. The computers of the future could work almost at the speed of light! Nanophotonics, the study of light at the nanometer scale, could indeed bring the speed of our technology to a completely different level. The Center for Integrated Nanostructure Physics (CINAP) within the Institute for Basic Science (IBS) have developed three key components of a circuit that works with light. Published in Nature Communications, these devices combine the advantages of photonics and electronics on the same platform.

While we are slowing approaching the end point of Moore's Law: a state where we physically cannot shrink the dimension of our transistors much further; the future of big data processing requires high performance computers with higher speed operations. Researchers reckon that if we build computers that process information through light, instead of electrons, computer will be able to work faster. However, at nanometer dimensions, the wavelength of light is larger than the diameter of the silicon fiber and for this reason some light can be lost. A solution to control the propagation of light in matter can come from surface plasmons. These are electromagnetic waves that propagate along the surface of some conductive materials like silver, gold, aluminum and copper. Using surface plasmons, optical information can be transmitted nearly at the speed of light and in extremely miniature volumes.

Using surface plasmons in silver nanowires and 2D semiconductors like molybdenum disulphide (MoS2), IBS scientists built three key components for optical communication: optical transistors, optical multiplexers and optical signal detectors.

These devices work thanks to a phenomenon called plasmon-exciton-plasmon interconversion. The graphics describe the details of this process step-by-step.

IBS scientists constructed the optical transistor by interconnecting the silver nanowire to a flake of MoS2. Light shone on the device is converted to surface plasmon, than to exciton, back to surface plasmon and eventually emitted as light with a shorter wavelength compared to the initial input. For example, if the input light is green, the output light can be red.

Wavelength multiplexing devices were realized in a similar way, but instead of having only a flake of MoS2, the researchers used an array of three different 2D semiconductor materials emitting light at different wavelengths. In this structure, for example, a single input light (violet color) generates three output lights (blue, green and red).

The propagating optical signals along the silver nanowire can be also transformed and detected as electrical signals by an optical signal detector.

"The originality of this paper arises from the exciton-plasmon interconversion. We published before the conversion of exciton to plasmon, and from plasmon to exciton using silver nanowire/2D semiconductor hybrids, but this is the first time that we can complete the circle going from plasmons to excitons and back to plasmons. Using this concept, we created optical transistors and multiplexors," explains professor Hyun Seok Lee, first author of this study.

###

Media Contact

Dahee Carol Kim
[email protected]
@IBS_media

http://www.ibs.re.kr/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Parental Stress in Neurodevelopmental Disorders: Key Factors Revealed

November 1, 2025

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

November 1, 2025

Boosting Lettuce Yields with Steel Slag Compost Teas

November 1, 2025

Comparing Immune Responses: Rituximab vs. Obinutuzumab in Follicular Lymphoma

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parental Stress in Neurodevelopmental Disorders: Key Factors Revealed

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.