• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Squeezing life from DNA’s double helix

Bioengineer by Bioengineer
December 13, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Xiaojiang Chen, USC

For years, scientists have puzzled over what prompts the intertwined double-helix DNA to open its two strands and then start replication. Knowing this could be the key to understanding how organisms – from healthy cells to cancerous tumors – replicate and multiply for their survival.

A group of USC scientists believe they have solved the mystery. Replication is prompted by a ring of proteins that bond with the DNA at a special location known as "origin DNA." The ring tightens around the strands and melts them to open up the DNA, initiating replication.

This all takes place at a nano level that is impossible to see with the naked eye. A strand of DNA is only about one nanometer in size – not even close to the width of a human hair which is roughly equivalent to 100,000 DNA strands.

The researchers made their discovery by studying a cancerous virus, SV40. The virus hijacked the DNA replication process with a ring of proteins, called a "helicase" that mimicked the rings of proteins that prompt genetic replication in healthy cells.

The findings were published on Dec. 6 in the journal eLife.

"Understanding the mechanisms of origin DNA opening or melting allows us to learn this fundamental process of genetic duplication," said corresponding author Xiaojiang Chen, a professor of biological sciences and chemistry in the USC Dornsife College of Letters, Arts and Sciences and director of the college's Center of Excellence in NanoBiophysics. "The knowledge we have gained may be applicable for future intervention of this process to block the replication of viral pathogens and cancer cells."

Xerox copies

When the origin DNA melts, the double helix divides into separate strands, Chen explained. Those DNA strands then become the template for faithful duplication of other strands – a Xerox copy of their parental DNA. As soon as replication is complete, one double helix DNA now becomes two exact copies of the same double helix.

"DNA replication is critical for heredity and survival," said Chen, who also is affiliated with the Norris Comprehensive Cancer Center at the Keck School of Medicine at USC. "The origin DNA's opening is an essential step for DNA replication in our cells and for some tumor viral pathogens to replicate and spread."

Why is origin DNA so special? Regular DNA sequences contain the A, T, G and C nucleotides, more or less in equal ratio. But origin DNA sequences contain more A and T nucleotides than usual.

To prompt replication, the scientists used a helicase from a "Large Tumor Antigen" or Large T. The antigen comes from a virus, SV40, linked to human cancers such as brain and bone cancers, mesothelioma and lymphoma. The six proteins from Large T comprise a "helicase" that mimics the structure of the healthy cells' helicases.

The scientists obtained a 3-D view of the atomic structure of the helicase using X-ray crystallography, a technique for examining nano-biomolecules and their structures at the atomic level that has been refined over centuries. Chen said the images revealed that the proteins which surrounded the DNA had attached to it, then tightened like a vice until the bonds between the two strands of the double helix broke – or melted – the origin DNA.

Although the scientists used a cancerous virus to study replication, healthy cells replicate in a similar way, Chen said.

###

Other co-authors were Dahai Gai, also of USC Dornsife, Damian Wang of the Keck School of Medicine at USC, and Shu-Xing Li of USC Dornsife's Center for Excellence in NanoBiophysics.

The study was funded by an NIH grant, A1055926.

Media Contact

Emily Gersema
[email protected]
213-740-0252
@USC

The Ultimate Guide to Monday’s Eclipse

############

Story Source: Materials provided by Scienmag

Share13Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Heart Health: Targeting Autonomic Nervous System

October 11, 2025

Unveiling Mental Health Challenges in Autistic Girls

October 11, 2025

Soft Exosuit Enhances Shoulder and Elbow Function Post-Injury

October 11, 2025

Link Between Nurse Practices and CAUTI Rates

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1214 shares
    Share 485 Tweet 303
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Heart Health: Targeting Autonomic Nervous System

Unveiling Mental Health Challenges in Autistic Girls

Soft Exosuit Enhances Shoulder and Elbow Function Post-Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.