• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Sponge-like electrodes inspired by sugar cubes could improve medical monitoring

Bioengineer by Bioengineer
August 4, 2022
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To monitor heart rhythms and muscle function, doctors often attach electrodes to a patient’s skin, detecting the electrical signals that lie beneath. These impulses are vital to the early diagnosis and treatment of many disorders, but currently available electrodes have limited function or are expensive to manufacture. Researchers reporting in ACS Nano, however, have now developed a low-cost, spongy version with improved signal detection that’s made with a surprising template — a sugar cube.

Sponge-like electrodes inspired by sugar cubes could improve medical monitoring

Credit: Adapted from ACS Nano 2022, DOI: 10.1021/acsnano.2c04962

To monitor heart rhythms and muscle function, doctors often attach electrodes to a patient’s skin, detecting the electrical signals that lie beneath. These impulses are vital to the early diagnosis and treatment of many disorders, but currently available electrodes have limited function or are expensive to manufacture. Researchers reporting in ACS Nano, however, have now developed a low-cost, spongy version with improved signal detection that’s made with a surprising template — a sugar cube.

The current gold-standard electrodes for electrophysiologic monitoring rely on a silver disc that contacts the skin through a conductive gel. These electrodes are critical tools for detecting abnormal electrical signals linked to health issues, such as heart attacks, brain disorders or neuromuscular diseases. These devices are not without their drawbacks, however. They are rigid and cannot conform well to the skin, particularly when the patient is physically active, reducing signal quality. In addition, the conductive gel dries quickly, preventing long-term monitoring and rare-event detection. Addressing these challenges, researchers have designed soft electrodes that better conform to the skin, as well as microneedle-based versions that physically penetrate the skin, but these are expensive to manufacture, limiting their widespread use. So, Chuan Wang and colleagues wanted to develop a low-cost sponge-like electrode that would offer more consistent and resilient skin contact.

To make the new device, researchers started with commercially available sugar cubes, which they molded into a template that was dipped into liquid polydimethylsiloxane (PDMS). The PDMS became a solid structure after a curing step. They then dissolved the sugar with hot water and coated the sponge’s micropores with a conductive thin film to form the electrode.

Because the micropores allowed the spongy material to have increased contact area with the skin, the new device showed strong signal intensity and reduced noise when compared with standard electrodes. The micropores also helped the device carry more conductive gel, which kept them from drying out as quickly and losing signal, compared to standard versions. The gel also acted as a shock absorber, reducing the negative impacts of patient movement on skin-electrode contact and ensuring signal detection. The researchers tested the ability of the sponge device to monitor uterine contractions during labor and found it performed as well as, or better than, a conventional electrode. As a low-cost, flexible alternative, sponge electrodes expand the possibilities for wearable health care applications, including use in medical exams that require patients to move, or for long-term monitoring of people at home or at work, say the researchers.

The authors acknowledge funding from the Bill & Melinda Gates Foundation.

For more of the latest research news, register for our upcoming meeting, ACS Fall 2022. Journalists and public information officers are encouraged to apply for complimentary press registration by completing this form.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook | LinkedIn | Instagram



Journal

ACS Nano

DOI

10.1021/acsnano.2c04962

Article Title

Stretchable Sponge Electrodes for Long-Term and Motion-Artifact-Tolerant Recording of High-Quality Electrophysiologic Signals

Article Publication Date

21-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.