• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

SPIE journal announces public access to largest multi-lesion medical imaging dataset

Bioengineer by Bioengineer
July 20, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: @SPIE

BELLINGHAM, Washington, USA and CARDIFF, UK – A paper published today in the Journal of Medical Imaging – "DeepLesion: Automated mining of large-scale lesion annotations and universal lesion detection with deep learning," – announced the open availability of the largest CT lesion-image database accessible to the public. Such data are the foundations for the training sets of machine-learning algorithms; until now, large-scale annotated radiological image datasets, essential for the development of deep learning approaches, have not been publicly available.

DeepLesion, developed by a team from the National Institutes of Health Clinical Center, was developed by mining historical medical data from their own Picture Archiving and Communication System. This new dataset has tremendous potential to jump-start the field of computer-aided detection (CADe) and diagnosis (CADx).

The database includes multiple lesion types, including kidney lesions, bone lesions, lung nodules, and enlarged lymph nodes. The lack of a multi-category lesion dataset to date has been a major roadblock to development of more universal CADe frameworks capable of detecting multiple lesion types. A multi-category lesion dataset could even enable development of CADx systems that automate radiological diagnosis.

The database is built using the annotations – "bookmarks" – of clinically meaningful findings in medical images from the image archive. After analyzing the characteristics of these bookmarks – which take different forms, including arrows, lines, ellipses, segmentation, and text – the team harvested and sorted those bookmarks to create the DeepLesion database.

Whereas the field of computer vision has access to the robust ImageNet3 dataset, which contains millions of images, the medical imaging field has not had access to the same quantity of data. Most publicly available medical image datasets contain just tens or hundreds of cases. With over 32,000 annotated lesions from over 10,000 case studies, the DeepLesion dataset is now the largest publicly available medical image dataset.

"We hope the dataset will benefit the medical imaging area just as ImageNet benefited the computer vision area," says Ke Yan, the lead author on the paper and a postdoctoral fellow in the laboratory of senior author Ronald Summers, MD, PhD.

In addition to building the database, the team also developed a universal lesion detector based on the database. The researchers note that lesion detection is a time-consuming task for radiologists, but a key part of diagnosis. This detector may be able to serve as an initial screening tool for radiologists or other specialist CADe systems in the future.

In addition to lesion detection, the DeepLesion database may also be used to classify lesions, retrieve lesions based on query strings, or predict lesion growth in new cases based on existing patterns in the database. The database can be downloaded at https://nihcc.box.com/v/DeepLesion.

Future work will include extending the database to other image modalities, like MR, including data from multiple hospitals, and improving the detection accuracy of the detector algorithm.

###

About SPIE

SPIE is the international society for optics and photonics, an educational not-for-profit organization founded in 1955 to advance light-based science, engineering, and technology. The Society serves nearly 264,000 constituents from approximately 166 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library. In 2017, SPIE provided more than $4 million in support of education and outreach programs. http://www.spie.org.

Contact:

Daneet Steffens
Public Relations Manager
[email protected]
+1 360 685 5478
@SPIEtweets

Media Contact

Daneet Steffens
[email protected]
360-685-5478
@SPIEtweets

http://spie.org/

Original Source

http://spie.org/x129396.xml http://dx.doi.org/10.1117/1.JMI.5.3.036501

Share12Tweet8Share2ShareShareShare2

Related Posts

Managing Hemolytic Disease in Newborns: Key Insights

September 19, 2025

Alpha Cells Double as Hidden GLP-1 Producers, Reveals New Research

September 19, 2025

Researchers Reveal Variation in Care Provided to Heart Attack Patients

September 19, 2025

Unraveling Uterine Leiomyomas: Insights into Tumor Biology

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Hemolytic Disease in Newborns: Key Insights

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.