• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Specialized blood vessels enhance tumor-fighting immunotherapy

Bioengineer by Bioengineer
April 13, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from VIB and KU Leuven, together with colleagues from the University of California and the Swiss Institute for Experimental Cancer Research have demonstrated that, anti-angiogenic therapy can improve immune boosting treatments. The successful combination of these two therapies results in the growth of specialized vessels that deliver cancer-fighting immune cells to the tumor, potentially leading to more effective treatments and longer survival periods. The results of the study are published in the peer-reviewed academic journal Science Translational Medicine.

Sustained angiogenesis, the growth of new blood vessels, and the suppression of the immune system are hallmarks of cancer, with an increasing amount of evidence demonstrating that these two activities are interrelated. Therapies that prevent tumor blood vessel growth are often used in clinics to fight cancer – but they are only effective in a particular subset of patients. Similarly, the recent successes to directly stimulate the immune system with inhibitors of negative immune checkpoint regulators – such as antibodies against programmed cell death protein 1 (PD-1) or its ligand PD-1 – has led to many clinical trials. However, only a minority of treated patients have responded to these immunotherapies, emphasizing the need to identify strategies that will increase response rates in patients. Dr. Elizabeth Allen and colleagues from the group of Prof. Dr. Gabriele Bergers at the VIB-KU Leuven Center for Cancer Biology provide evidence that anti-PD-L1 therapy can sensitize and prolong efficacy of anti-angiogenic therapy, and conversely, anti-angiogenic therapy can improve anti-PD-L1 treatment specifically when intratumoral HEVs are generated that facilitate enhanced whire cell infiltration, activity and tumor cell destruction.

Blood vessels help regulate immunity

To avoid being targeted by their hosts' immune systems, tumors maintain an immunosuppressive environment by manipulating the characteristics of the immune and vascular system. Increased blood supply and decreased immune activity are necessary for malignant cells to multiply.

Prof. Dr. Gabriele Bergers (VIB-KU Leuven): "The network of blood vessels itself is an important regulator of immunity because it controls white blood cell traffic. By preventing the infiltration of white blood cells, the cancer is able to evade the host's immune system."

A counterintuitive outcome

Interestingly, the team showed that combining anti-angiogenic and immune-stimulating therapies in the treatment of tumors in mouse models resulted in better therapeutic outcomes by providing white blood cell gates through which they can infiltrate cancers.

Dr. Elizabeth Allen (VIB-KU Leuven): "It was interesting to observe that this combination of immune system-activating and anti-angiogenic antibodies causes a positive feedback loop. The result is the growth of specific blood vessels that deliver cancer-fighting immune cells into the tumor. These high endothelial venules (HEVs) are normally found in lymphoid organs such as lymph nodes, where they help transport white blood cells. For the first time, we showed that the growth of HEVs can be therapeutically induced in tumors."

Describing the process

The results of the study indicate that the two therapies stimulated significant growth of HEVs in pancreatic and mammary tumors, leading to malignant cell death and tumor shrinkage. The next step in this research involves investigating how intratumoral HEVs are formed and maintained.

Prof. Gabriele Bergers (VIB-KU Leuven): "Understanding the underlying mechanisms of the process will contribute to the overarching goal of developing new therapeutic approaches to boosting the immune system in tumors."

###

Note: The research group of Prof. Gabriele Bergers is part of the VIB-KU Leuven Center for Cancer Biology

Media Contact

Katrina Wright
[email protected]
32-924-46611
@VIBLifeSciences

http://www.vib.be

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Chitosan Nanoparticles: A New Way to Combat Liver Fibrosis

November 13, 2025
Dual-Pathway Synthesis Builds Non-Adjacent Stereocenters

Dual-Pathway Synthesis Builds Non-Adjacent Stereocenters

November 13, 2025

Polyherbal Remedies Alleviate CCl4-Testicular Toxicity

November 13, 2025

Optimizing Melanin Production from Endophytic Pseudomonas

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chitosan Nanoparticles: A New Way to Combat Liver Fibrosis

Dual-Pathway Synthesis Builds Non-Adjacent Stereocenters

Polyherbal Remedies Alleviate CCl4-Testicular Toxicity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.