• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Special iron uptake deep inside the Savoy cabbage head

Bioengineer by Bioengineer
August 15, 2023
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A surprising twist has been found in a study by researchers at Eötvös Loránd University (ELTE), published in the journal Frontiers in Plant Science. Their research has revealed that the mechanism of iron uptake by plastids in the absence of light is similar to the process facilitated by photosynthesis. Their discovery could have implications for our food and health knowledge and its applications, as our plant foods and their plastids represent an important source of iron for humans.

Halved Savoy cabbage head

Credit: Photo: Katalin Solymosi

A surprising twist has been found in a study by researchers at Eötvös Loránd University (ELTE), published in the journal Frontiers in Plant Science. Their research has revealed that the mechanism of iron uptake by plastids in the absence of light is similar to the process facilitated by photosynthesis. Their discovery could have implications for our food and health knowledge and its applications, as our plant foods and their plastids represent an important source of iron for humans.

Iron is one of the most important mineral nutrients for living organisms. It is therefore essential in both humans and plants for enzymes involved in crucial life processes such as cellular respiration or photosynthesis. Iron incorporation into these enzymes is thus essential for the metabolism. 

Photosynthesis – the metabolic process that uses sunlight energy to produce organic matter from carbon dioxide and water in plants – therefore requires iron. Since photosynthesis takes place inside chloroplasts, within the plant cell iron must be transported into these organelles. At the Department of Plant Physiology and Molecular Plant Biology of the Eötvös Loránd University, Dr Ádám Solti and his research team have been investigating the molecular processes that enable iron uptake of chloroplasts for many years.

“Because of the importance of photosynthesis, we know a lot about photosynthetically active plastids and have been studying their iron uptake for a long time. Iron uptake by chloroplasts requires light. However,

it has been a long-standing question whether iron uptake in plant tissues that are not exposed to sunlight is the same as in chloroplasts”

explains the basic idea of the research Máté Sági-Kazár, PhD student. All that was needed was a suitable research object from which large quantities of plastids of different developmental stages could be isolated for the investigation. The test object was practically lying on the (kitchen) table.

We all know Savoy cabbage well. The Savoy cabbage heads are huge, modified buds, from the stalk of which arise a number of leaves of different colour and of different developmental stages. In a half-cut Savoy cabbage head, you can see that the outer leaves, exposed to the light, are green, but as we move inwards, the leaves gradually fade, and the innermost, smallest and youngest leaves are white-yellowish. This phenomenon is related to the fact that in the absence of light, angiosperm plants cannot produce chlorophyll, the green pigment, and without it they cannot photosynthesize.

“The inner leaves of cabbage heads are practically shaded by the outer green leaves, blocking them from light, so that a light deficit gradually develops moving inwards inside the heads. Instead of the accumulation of green chlorophylls in the inner leaf layers, we can only see the yellowish colour of the carotenoids present, and special types of photosynthetically inactive plastids, the so-called etioplasts, develop in them, as described earlier in the case of white cabbage” explains Dr Katalin Solymosi, one of the participants in the research, while talking about the advantages of the plant used for the experiments.

This multi-institutional and multi-researcher study has therefore investigated the iron uptake mechanisms of the plastids of leaves that are photosynthetically inactive, and has compared them with those that are. The physiological processes observed for the first time showed that the uptake of iron by the plastids follows exactly – although to a lesser extent – the same principle as that characterizing chloroplasts.

“During the past fifteen years, the uptake of iron by chloroplasts was thought to be exclusively linked to photosynthesis and, to a lesser extent, to the direct chemical reduction of iron by sunlight.

The results of our studies have brought about a surprising change in what we previously knew about the vital nutrient homeostasis of organelles”

summarised Dr Ádám Solti, the leader of the research.

All these basic research-type scientific studies are of particular interest to the food industry and health care, as our plant-based foods and their plastids represent an important source of iron for humans. Therefore, it is important to understand which factors play an important role in the uptake and accumulation of iron in plastids and how it may be improved or regulated.


The research was funded by a grant of the National Research, Development and Innovation Office – NKFIH (K-135607). The work of Máté Sági-Kazár was supported by the New National Excellence Programme of the Ministry of Innovation and Technology. The research of Katalin Solymosi (ELTE), Sándor Lenk (BME) and Ádám Solti (ELTE) was supported by the Bolyai János Research Scholarship from the Hungarian Academy of Sciences.

Article details:

Máté Sági-Kazár, Éva Sárvári, Barnabás Cseh, Levente Illés, Zoltán May, Csaba Hegedűs, Attila Barócsi, Sándor Lenk, Katalin Solymosi and Ádám Solti: Iron uptake of etioplasts is independent from photosynthesis but applies the reduction based strategy. Frontiers in Plant Science 14:1227811. doi: 10.3389/fpls.2023.1227811



Journal

Frontiers in Plant Science

DOI

10.3389/fpls.2023.1227811

Article Title

Iron uptake of etioplasts is independent from photosynthesis but applies the reduction-based strategy

Article Publication Date

11-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Real-Time Imaging Reveals Caspase Dynamics and Immunogenic Death

Real-Time Imaging Reveals Caspase Dynamics and Immunogenic Death

August 6, 2025
Predicting Time of Death Using Organ Metabolites

Predicting Time of Death Using Organ Metabolites

August 6, 2025

Mapping Mood and Substance Use in Urban Teens

August 6, 2025

Early Pregnancy Depression Linked to Toddler Allergies

August 6, 2025

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prenatal Antibiotics Impact Breast Milk, Neonatal Immunity

Real-Time Imaging Reveals Caspase Dynamics and Immunogenic Death

Predicting Time of Death Using Organ Metabolites

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.