• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sparkling springs aid quest for underground heat energy sources

Bioengineer by Bioengineer
July 21, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Analysis of natural sparkling mineral water has given scientists valuable clues on how to locate hot water springs – potential sources of sustainable, clean energy.

Studies at naturally carbonated springs have shown how oxygen in the water comes to have a distinctive chemical fingerprint.

Research showed that this fingerprint is influenced by the presence of carbon dioxide gas – and not by heat from below the Earth's surface, as was previously thought.

The finding may help scientists narrow their search for sites where geothermal energy – heat generated and stored in the Earth – could be sustainably recovered.

Scientists from the University of Edinburgh analysed water from naturally carbonated springs in Daylesford, Australia, and Pah Tempe in Utah, US.

The team used computers to model the interactions between the water and surrounding rocks, based on measurements of water samples from the sites. Their findings eliminated the possibility that minerals from the rocks affected the oxygen in the water. Instead, they showed that CO2 gas must be influencing the oxygen's composition.

The study, published in Applied Geochemistry, was supported by the UK Engineering and Physical Sciences Research Council and the Australian research organisation CO2CRC.

R?ta Karolyt?, of the School of GeoSciences, who led the study, said: "The oxygen fingerprint of spring waters has long been used to estimate the depth of the water's source. Our new finding, that the mixing of natural CO2 with water changes its oxygen fingerprint, means that many sparkling spring waters previously thought to be originating from very deep in the Earth's crust actually only have this fingerprint because of mixing with CO2."

Dr Stuart Gilfillan, of the School of GeoSciences, who co-ordinated the study, said "This finding changes how we can use the oxygen fingerprints of natural spring waters to identify potential geothermal resources. Estimates of how much heat a sparkling water spring has been exposed to should take into account the effect of CO2."

###

Media Contact

Catriona Kelly
[email protected]
44-779-135-5940
@edinunimedia

http://www.ed.ac.uk

http://www.ed.ac.uk/news/2017/sparkling-springs-aid-quest-for-underground-heat

Share12Tweet7Share2ShareShareShare1

Related Posts

Thyroid Peroxidase Variants as Subclinical Hypothyroidism Markers

Thyroid Peroxidase Variants as Subclinical Hypothyroidism Markers

November 12, 2025
Tailored ML Models Enhance AAA Outcome Predictions

Tailored ML Models Enhance AAA Outcome Predictions

November 12, 2025

Optimized Bacillus Production of Hyaluronic Acid

November 12, 2025

New Role for PPARs in Bovine Hepcidin Regulation

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SMIM45-107aa Peptide Drives HCC Progression via MTDH

Sedation-Free Silent MRI for Infants Enhanced by Deep Learning

Stroke Survivors’ Health Tied to Living Arrangements

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.