• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Soy protein concentrate can replace animal proteins in weanling pig diets

Bioengineer by Bioengineer
April 10, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Flickr – Nick Saltmarsh

URBANA, Ill. – Plant-derived proteins are less expensive than animal proteins if used in weanling pig diets, but may contain anti-nutritional factors that can negatively affect gut health and growth performance. However, results of a new study from the University of Illinois indicate that soy protein concentrate (SPC) may be partly or fully substituted for animal proteins without adverse effects.

"We determined digestibility of crude protein, amino acids, and energy in SPC ground to three particle sizes," says U of I animal sciences professor Hans H. Stein. "We also investigated the effects of substituting SPC for animal proteins on weanling growth performance."

Soy protein concentrate is derived from defatted soy flakes by removing soluble carbohydrates and some nonprotein constituents. Three particle sizes – 70, 180, and 700 micrometers – were tested because earlier work showed that particle size of soybean meal affects digestibility of amino acids in weanling pigs.

In the group's first experiment, pigs were fed diets containing soybean meal, fish meal, or SPC ground to one of the three particle sizes. Ileal digesta were collected and analyzed for amino acid and crude protein content.

Standardized ileal digestibility (SID) of crude protein was not different among the three diets containing SPC, but diets with SPC ground to 70 or 180 micrometers had greater crude protein digestibility than the traditional protein sources. The SID of several amino acids, including tryptophan, was also greater in diets containing SPC ground to 70 or 180 micrometers, compared with the other diets.

Stein explains that these results differed from similar studies using soybean meal, in which particle size had a greater influence on digestibility. "It could be that alcohol extraction used in SPC processing improves digestibility, making it unnecessary to reduce particle size further to obtain the same results."

In a second experiment, weanling pigs were fed corn mixed with each of the protein sources used in the first experiment. The goal was to measure apparent total tract digestibility of gross energy and the digestible and metabolizable energy in each diet.

"There were no differences in digestible and metabolizable energy among the three SPC particle sizes, but SPC ground to 180 micrometers contained more digestible energy than corn, soybean meal, and fish meal," Stein says.

Finally, the researchers investigated the effects of SPC on growth performance and blood characteristics. In this experiment, pigs were fed combinations of fish meal, spray-dried protein plasma, and SPC ground to 180 micrometers. The different diets did not change growth performance overall and no reduction in performance was observed if SPC was used instead of fish meal or spray-dried protein plasma.

"Results of this experiment indicated that diets based on soybean meal and SPC can be fed to weanling pigs without negative effects on growth performance during the initial four weeks after weaning," Stein says.

Altogether, results of the three experiments indicate that SPC ground to 180 micrometers may be used as an alternative to animal proteins in weanling pig diets.

The article, "Nutritional value of soy protein concentrate ground to different particle sizes and fed to pigs," is published in Journal of Animal Science. The research was funded by Selecta.

###

Media Contact

Lauren Quinn
[email protected]
217-300-2435
@ACESIllinois

http://aces.illinois.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

SARS-CoV-2 Dynamics in MHCI-Mismatched Lung Transplant

September 16, 2025
blank

Donor Milk Pasteurization Shapes Preterm Infant Microbiome

September 16, 2025

New Research Uncovers How Message Types Inspire People to Take Conservation Action

September 16, 2025

Increased Brain Amyloid Found in Older Adults with Parkinson’s Disease Without Dementia

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SARS-CoV-2 Dynamics in MHCI-Mismatched Lung Transplant

Donor Milk Pasteurization Shapes Preterm Infant Microbiome

New Research Uncovers How Message Types Inspire People to Take Conservation Action

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.