• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

South Africa’s long-legged bees adapted to pollinate snapdragon…

Bioengineer by Bioengineer
February 13, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Anton Pauw

New research from Stellenbosch University (SU) in South Africa shows that, in an extraordinary case of adaptation, the disproportionately long front legs of South Africa's oil-collecting Rediviva bee species have evolved in response to the equally long oil-producing spurs of snapdragons.

"This is one of the few examples where a pollinator had to adapt to the flowers that it pollinates, rather than the other way round," explains Prof Anton Pauw, lead author of the article 'Long-legged bees make adaptive leaps: linking adaptation to coevolution in a plant-pollinator network', published in the Proceedings of the Royal Society B: Biology today (13 September 2017).

Prof Pauw, an evolutionary ecologist in the Department of Botany and Zoology at SU, says pollinators often hold the key to understanding the genesis of floral diversity. In other words, the flowers of plants have adapted to their pollinators in spectacular ways in order to be able to reproduce.

In this case, however, the little-known Rediviva bee species have developed front legs of varying lengths – from 6.9 to 23.4 mm long – in order to reach the oil produced deep at the back of the snapdragon's twin spurs. The length of these spurs also vary from species to species, with 70 species in the largest genus of oil-producing flowers (Diascia).

The bees' front legs are coated in a dense pile of velvety hairs that soak up the oil, which is then mixed with pollen to form a super-nutritious bread for the larvae in their underground nests. The oil is also used to line the walls of these underground nests.

Working in collaboration with researchers from Germany, the United Kingdom, Belgium and the United States of America, Pauw used DNA analysis to produce a family tree for 19 of the 26 Rediviva species: "We were able to show that very closely related bee species often differ dramatically in leg length and that this divergence could be explained by differences in the spur length of the flowers that they visit."

Documenting the network of interactions between the oil-collecting bees and the 96 plant species from which they gather oil, required many years of observation. Many of the oil-secreting plants flower only the first year after a fire.

Prof Pauw says the next step would be to do a phylogenetic analysis of snapdragons (Diascia), to test whether flower spur length and bee leg length evolved simultaneously as one would expect if bees and plants were coevolving: "In this scenario, plants and bees evolve together in a sort of evolutionary dance."

He says it is important, from an ecological perspective, to understand these interactions: "Oil-collecting bees are threatened by man's activities, in particular by urbanization. By understanding their role in generating and maintaining plant diversity, it might be possible to predict and ameliorate human impacts".

###

Co-authors on the article are Belinda Kahnt, Michael Kuhlmann, Denis Michez, Graham A. Montgomery, Elizabeth Murray and Bryan N. Danforth.

Media Contact

Anton Pauw
[email protected]
027-021-808-3314
@scienceSUN

http://www.sun.ac.za

Original Source

http://www.sun.ac.za/english/Lists/news/DispForm.aspx?ID=5133 http://dx.doi.org/10.1098/rspb.2017.1707

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Honey Bee Antenna Protein Critical for Olfactory Behavior

September 7, 2025
Turtle Meat Trade in Indonesia: Minimal Economic Impact

Turtle Meat Trade in Indonesia: Minimal Economic Impact

September 7, 2025

Winter Waterbirds Adapt to Severe Drought Challenges

September 7, 2025

Honey Bee Gene Expression Altered by Electric Fields

September 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    55 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pilot Intervention to Support Caregivers of Schizophrenic Seniors

Gender Disparities in OSA: Endocrine, Metabolic, Psychological Effects

LPS-TLR4 Axis: Gut Dysbiosis and Heart Failure Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.