• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sorting the myriad medicinal molecules of coral reefs

Bioengineer by Bioengineer
October 12, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Mark Vermeij

Coral reefs harbor an incredible diversity of life, both sea creatures we can see and microbial life that we cannot. These organisms generate an enormous number of molecules as they eat food, photosynthesize, reproduce and ward off infections. Researchers have identified several coral reef-derived molecules as having medicinal properties, such as secosteroids, which are steroid compounds used to treat inflammatory disorders; or the chemical compound bryostatin 1, derived from an invertebrate coral reef denizen known as bryozoans and being evaluated as a treatment for Alzheimer's disease.

Yet many thousands more coral reef molecules with medicinal potential are unknown to science. A study led by San Diego State University biologists describes a promising new method for screening the molecular output of reef life for important chemical properties, which could make it much easier to identify the next generation of coral reef-derived drugs and better understand the diversity of molecules found in the ocean.

"We know what so few of these molecules are and what they do," said the paper's lead author, Aaron Hartmann, a postdoctoral biologist with a dual appointment at SDSU and the Smithsonian Institution. "That's a pretty big roadblock to developing therapeutic drugs derived from them."

Hartmann led the study alongside SDSU biologist Forest Rohwer and colleagues from the University of California, San Diego; the National Oceanic and Atmospheric Administration; the European Molecular Biology Laboratory in Heidelberg, Germany; Imperial College London; the CARMABI Foundation Curaçao; the University of Amsterdam, and Bangor University in Wales. Rohwer co-leads the SDSU Viral Information Institute, a world leader in viral ecology research.

Molecular fingerprints

Working with chemist Pieter Dorrestein's laboratory at the Skaggs School of Pharmacy at UC San Diego, the researchers analyzed tissue samples from corals, algae and fungus collected by Rohwer and others on coral reefs near the remote Line Islands in the central Pacific Ocean.They isolated each organism's molecules and sent them through an instrument called a mass spectrometer that measured each molecule's mass. Next, they broke the molecules apart with a laser and measured the masses of those pieces.

Molecules tend to break apart in predictable ways, so by measuring the mass of these chemical pieces, the researchers were able to come up with a set of "molecular fingerprints"–patterns in the chemical profiles that point to the presence of particular molecules.

However, knowing its chemical fingerprint alone can't tell you what a specific molecule does if it hasn't been described before. The database of known molecules represents only a very small fraction of the molecules that exist, Hartmann explained.

To get around that limitation, the researchers next employed an ingenious trick. They used an algorithm created in Dorrestein's lab to screen these molecular fingerprints, and if the chemical makeups of two unknown molecules were similar, they were flagged as related molecules. Hartmann and Daniel Petras, a postdoctoral chemist at UC San Diego, then explored the chemical reactions of these unknown molecules to get a better idea of how they behave.

This analysis helps answer a long-standing mystery in marine biology: Why do coral reefs have such vast molecular diversity? Comparing even very closely related organisms, the researchers discovered each had different molecular fingerprints, suggesting that these organisms can modify the same molecules differently to suit their particular biological niches.

In other words, even closely related organisms might face different health challenges depending on their geographic location, for example, and therefore tweak their molecules just slightly to better defend themselves. The researchers reported their results today in the Proceedings of the National Academy of Sciences.

Potential therapeutic value

"Molecular relatedness can tell you about the potential chemical reactions exhibited by these unknown molecules," Hartmann said. "That, in turn, can tell you something about their potential therapeutic value."

So instead of screening each individual molecule one-by-one to see if it has medicinal properties, this technique would allow drug discovery scientists to easily hunt for chemical properties exhibited by known drugs. These newly discovered molecules might have benefits over known drugs–more potent, for example, or with fewer side effects.

"Using this method, we're not held back by the fact that our molecular database is pretty sparse," Hartmann said. "If you know what chemical reactions are important, you can then go looking for molecules with those properties."

###

This research was was funded by the National Science Foundation, the Gordon and Betty Moore Foundation, the National Institutes of Health, the European Union and the German Research Foundation

Media Contact

Michael Price
[email protected]
@SDSU

http://www.sdsu.edu

Original Source

https://newscenter.sdsu.edu/sdsu_newscenter/news_story.aspx?sid=76960 http://dx.doi.org/10.1073/pnas.1710248114

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025
blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025

Unraveling the Connections Between Brain Development and Mental Health

November 4, 2025

ASBMB Announces Launch of Insights in Biochemistry and Molecular Biology, a New Journal Showcasing Breakthroughs Across Molecular Life Sciences

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Medication Errors: A Feasibility Study

Alzheimer’s Disease Disrupts Brain-to-Fat Tissue Communication, Potentially Aggravating Cardiovascular and Metabolic Health

DGIST Unveils Revolutionary Memristor Wafer Integration Technology, Advancing Brain-Inspired AI Chip Development

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.