• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Sophisticated optical secrets revealed in glossy buttercup flowers

Bioengineer by Bioengineer
February 21, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Casper van der Kooi

Buttercup flowers are known for their intense, shiny yellow colour. For over a century, biologists have sought to understand why the buttercup stands out. University of Groningen scientists have now brought together all that was known about the buttercup and added some new information too. The results will be published by the Journal of the Royal Society Interface on 22 February 2017.

The anatomy of the buttercup's petals is the first step in discovering the secret of its colour. The petals have a one-cell thick epidermis, which contains a yellow pigment. Underneath this very thin cell layer is an air chamber. During his work as a PhD student at the University of Groningen, Casper van der Kooi (who now works at Lausanne University, Switzerland) measured light spectra reflecting from this epidermal layer.

Unique

'We discovered that this layer acts as a thin optical film. The colour-generating mechanism is similar to oil on water or a soap bubble', says Van der Kooi. 'Light is reflected on both sides of the epidermis, where the cells and air meet. As the cell layer is very smooth and thin, optical interference occurs and the reflected colours merge. This creates a white sheen, which makes the petals seem glossy.'

This kind of thin pigmented film is unique in the world of plants. 'Butterflies use similar structures to produce colour, as do some birds, but buttercups are the only known flowers to do so', says Van der Kooi. The structure of the epidermis has been described before, but Van der Kooi and colleagues are the first to measure light spectra and conclude that the cell layer acts as a thin film.

Advantages

Alongside the air chamber, the buttercup petals have another unique structure: a starch layer, which again scatters light and sends some of it back through the pigmented epidermis. 'Thus, the light reflected by the starch travels through the pigments twice, giving it a very rich yellow colour.' Van der Kooi used a physical model of the petals which he had previously developed to explain how these unique anatomical features are responsible for both the intensity of colour and the sheen of the petals.

But why should the flower produce such complex petals? Van der Kooi can see two advantages. 'The first is that, under the right conditions, the gloss reflecting from the epidermis can produce a bright flash that is visible to pollinating insects from a great distance.' The sun needs to be high in a clear sky for this to happen.

Warmer

The second advantage is that the buttercup is heliotropic, which means that its flowers follow the sun, especially on cold days. When it is cold, the petals form a paraboloid-shaped cup (like a satellite dish), thus reflecting the sunlight towards the central area of the flower, where the reproductive structures are located.

'We are still doing measurements, but our hypothesis is that this light helps to increase the temperature of the reproductive organs, which enhances seed and pollen maturation.' Previous measurements by others have shown that the centre of the buttercup flower can be several degrees warmer than the ambient temperature. 'But this may also be due to the shielding effect of the petals from the wind.'

This work has thus solved much of the mystery surrounding the buttercup. 'We can now explain the effects of the complex anatomy of the petals.'

###

Reference: van der Kooi CJ, Elzenga JTM, Dijksterhuis J, Stavenga DG. 2017. Functional optics of glossy buttercup flowers. Journal of the Royal Society Interface 22 February 2017

Media Contact

Rene Fransen
[email protected]
@univgroningen

http://www.rug.nl/corporate/index

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Plasma Metabolome Links to Health in 274,241 Adults

September 19, 2025

Maternal Heart Health Shapes Child Brain Development Early

September 19, 2025

Novel Nanoparticle System Boosts Cancer Treatment Efficacy

September 19, 2025

Risk-Based Approaches to Kidney Health in Diabetes

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Plasma Metabolome Links to Health in 274,241 Adults

Maternal Heart Health Shapes Child Brain Development Early

Novel Nanoparticle System Boosts Cancer Treatment Efficacy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.