• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Solving the puzzle of polymers binding to ice for Cryopreservation

Bioengineer by Bioengineer
March 15, 2021
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Credit: University of Warwick

  • Cryoprotectants are used to protect biological material during frozen storage
  • They have to be removed when defrosting, and how much to use and how exactly they inhibit ice recrystallisation is poorly understood
  • The polymer poly(vinyl)alcohol (PVA) is arguably the most potent ice recrystallisation inhibitor and researchers from the University of Warwick have unravelled how exactly it works.
  • This newly acquired knowledge base provides novel guidelines to design the next generation of cryoprotectants

When biological material (cells, blood, tissues) is frozen, cryoprotectants are used to prevent the damage associated with the formation of ice during the freezing process. New polymeric cryoprotectants are emerging, alongside the established cryoprotectants, but how exactly they manage to control ice formation and growth is still largely unknown. This is especially true for PVA, a deceptively simple synthetic polymer that interacts with ice by means of mechanisms that have now been revealed at the atomistic level thanks to researchers from the University of Warwick.

Cryoprotectants are crucial when freezing biological material to lessen the cellular damage involved with the formation of ice. Ice re-crystallization, that is the process by which larger ice crystals grow at the expense of smaller ones, is one of the major issues affecting the current cryopreservation protocols and it is still poorly understood. Researchers from the University of Warwick have investigated how a rather popular polymer with the potential to be used in cryopreservation binds to the growing ice crystals.

In the paper, ‘The atomistic details of the ice recrystallisation inhibition activity of PVA’, published in the journal Nature Communications, researchers from the University of Warwick have found that, contrary to the emerging consensus, shorter or longer polymeric chains of poly(vinyl)alcohol (PVA) all bind to ice.

Up to now, the community has been working under the assumption that short polymers do not bind strongly enough to the ice crystals, but in this work Dr. Sosso and co-workers have demonstrated that it is the subtle balance between these binding interactions and the effective volume occupied by the polymers at the interface with ice that determine their effectiveness in hindering ice re-crystallization.

This work brings together experimental measurements of ice recrystallization inhibition and computer simulations. The latter are invaluable tools to gain microscopic insight into processes such as the formation of ice, as they are able to see what is happening in very fast or very small processes which are hard to see via even the most advanced experimental techniques.

This work sheds new light onto the fundamental principles at the heart of ice re-crystallization, pinpointing design principles that can be directly harnessed to design the next generation of cryoprotectants. This achievement is a testament to the strength of what is affectionately known as ‘Team Ice’ at Warwick, an ever-growing collaborative network with the potential to make a huge impact on many aspects of ice formation, from atmospheric science to medicinal chemistry.

Fabienne Bachtiger, a PhD student working in the research group of Dr. Sosso (Department of Chemistry) who has spearheaded this work, explains:
“We have found that even rather short chains of PVA, containing just ten polymeric units, do bind to ice, and that small block co-polymers of PVA bind too. It is important for the experimental community to know this, as they have been working under different assumptions up to now. In fact, this means we can successfully use much smaller polymers than previously thought. This is crucial information to aid the development of new more active cryoprotectants.”

Dr. Gabriele Sosso, from the Department of Chemistry at the University of Warwick, who is leading a substantial computational effort to investigate the formation of ice in biological matter, points out that:
“With this contribution we have added a crucial piece to the puzzle of how exactly polymeric cryoprotectants interact with growing ice crystals. This is part of a larger body of computational and theoretical work that my group is pursuing with the intent to understand how cryoprotectants work at the molecular level, so as to identify designing principles that can be directly probed by our experimental colleagues. Warwick is the perfect place to further our understanding of ice, and this work showcases the impact of the very exciting collaboration between my research group and the Gibson Group.”

Professor Matthew Gibson, from the Department of Chemistry and Warwick Medical School at the University of Warwick adds: “Ice re-crystallization is a real challenge in cryobiology, leading to damage to cells but also in frozen foods or infrastructure. Understanding how even this ‘simple’ polymer works to control ice re-crystallization is a major step forward to discover new cryoprotectants, and ultimately to use them in the real world.”

###

15 MARCH 2021

Media Contact
Alice Scott
[email protected]

Original Source

https://warwick.ac.uk/newsandevents/pressreleases/solving_the_puzzle/

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21717-z

Tags: BiochemistryChemistry/Physics/Materials SciencesFertilityPharmaceutical SciencesPharmaceutical/Combinatorial ChemistryPolymer ChemistryTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

Genkwanin Glycosides Boost Glucose Uptake in Fat

Genkwanin Glycosides Boost Glucose Uptake in Fat

August 16, 2025
Biosilica Nanoparticles Combat Liver Ischemia Injury

Biosilica Nanoparticles Combat Liver Ischemia Injury

August 16, 2025

Treg Therapy Boosts Pro-Inflammatory Th17 via IL-2

August 16, 2025

Intratracheal Budesonide Boosts Preterm Infant Lung Health

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.