• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Soil fungi may help determine the resilience of forests to environmental change

Bioengineer by Bioengineer
March 16, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kai Zhu

Nature is rife with symbiotic relationships, some of which take place out of sight, like the rich underground exchange of nutrients that occurs between trees and soil fungi.

But what happens in the dark may have profound implications above ground, too: A major new study reveals that soil fungi could play a significant role in the ability of forests to adapt to environmental change.

Kai Zhu, assistant professor of environmental studies at UC Santa Cruz, took a unique "big data" approach to investigating the role of symbiotic fungi in tree migration in forests across the eastern United States.

"Our climate is rapidly changing, and our forests are responding, but in very slow motion–it's hardly detectable," said Zhu, who wanted to identify factors that contribute to the pace of that response.

In forests, tree growth largely depends on the nutrients available in the soil, while the transfer of carbon through roots to the soil regulates ecosystem processes. Mycorrhizal ("MY-koe-RY-zull") fungi grow on the roots of most plants and drive the nutrient-carbon exchange between plants and soil: They take up carbon resources from their hosts and provide soil nutrients that plants need. The two most common fungi associated with forest trees are ectomycorrhizal (ECM), which grow on conifers, including pines, oaks, and beeches, and arbuscular (AM), which grow on most nonconifers, such as maples.

Zhu utilized data from the U.S. Department of Agriculture's Forest Inventory and Analysis program to examine how soil carbon and nitrogen levels differ across stands of forest that are characterized by "AM dominant" trees and "ECM dominant" trees. He correlated the distribution of trees with soil fungi and content, then analyzed the distribution of trees by fungus type. In the most significant finding, Zhu was able to identify distinct soil nitrogen "signatures" that impact soils and ecosystems in ways that may determine the resilience of forests to the changing climate.

Specifically, soil carbon-to-nitrogen ratios increase with greater ECM dominance–even after accounting for climate, soil texture, and foliar nitrogen. Moreover, ECM dominance is more associated with low soil nitrogen rather than high soil carbon.

"These findings suggest that AM and ECM trees have differential success along nitrogen fertility gradients, or perhaps that AM and ECM trees promote differences in cycling rates of carbon and nitrogen because of traits associated with nitrogen acquisition," he said. "Both processes may occur simultaneously, leading to a self-reinforcing positive plant-soil feedback."

Zhu's findings suggest that the mycorrhizal guild could be an emerging "functional trait."

Functional traits are those that define species in terms of their ecological roles–how they interact with the environment and with other species. As such, they are predictable and easily measured from the ground or by satellite, which makes them particularly valuable to scientists who are monitoring environmental responses to climate change. "They tell us how the ecosystem is responding," said Zhu.

"There is no evidence yet that eastern forests are shifting their geographic ranges to higher latitudes in response to warming temperatures," said Zhu. "But understanding how mycorrhizal relationships impact ecosystems will help us predict how forests will respond to global change."

Zhu's study, published in the Journal of Ecology, is one of the first to use the USDA's large-scale data set to see how climate change is impacting the ecosystem, an approach known as "top down" rather than "bottom up."

As a quantitative environmental scientist, Zhu brings the tools of statistics and data science to the study of global ecology. Rather than measuring fungal traits in the soil and scaling up, Zhu uses existing data–including large-scale datasets generated by satellites–to look at patterns and processes playing out on continental and global scales. "Big data is becoming more and more popular and powerful," he said. "It's different from traditional research in ecology, which takes place in a lab or in the field."

Zhu, whose background is in physics and systems theory, brings tremendous urgency to his work on climate change. His research focuses on four areas: forest ecosystems, grassland, soil, and phenology, which Zhu describes as "nature's calendar."

Zhu is determined to make solid contributions to a field in which much of the evidence is incomplete and unconvincing.

"We know the environment is changing, but how it impacts the Earth and its systems is a big question," he said. "As scientists, we have the responsibility to correctly work out this problem–it's a problem that's important to scientists and the general public."

###

Media Contact

Jennifer McNulty
[email protected]
831-459-4399
@ucsc

Home

Original Source

https://news.ucsc.edu/2018/03/zhu-fungi.html

Share13Tweet7Share2ShareShareShare1

Related Posts

blank

SARS-CoV-2 Triggers Pro-Fibrotic, Pro-Thrombotic Foam Cells

August 22, 2025
blank

RETICULATA1: Key Plastid Basic Amino Acid Transporter

August 22, 2025

Link Between Halquinol and Antibiotic Resistance Explored

August 22, 2025

Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Signaling Pathways Drive Cisplatin Resistance via SOX2

Study Finds No Link Between Animal Protein Consumption and Increased Mortality Risk

Ovarian Cancer Trends in War-Torn Syria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.