• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Soil amendments for healthier spinach

Bioengineer by Bioengineer
October 4, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Carrie Green.

Soils keep plants healthy by providing plants with water, helpful minerals, and microbes, among other benefits. But what if the soil also contains toxic elements?

In areas like Salinas Valley, California, the soils are naturally rich in the element cadmium. Leafy vegetables grown in these soils can take up the cadmium and become harmful to humans. What to do? The solution goes back to the soil. Adrian Paul, a former researcher now working in the Sustainable Mineral Institute in Brisbane, Australia, is working to find which soil additives work best.

Cadmium appears in very low levels or in forms that prevent contamination in soils across the world. However some soils, like those in this California study, naturally have more than others. It can result from the erosion of local rock formations. In some instances, it's present due to human activity. Metal processing, fertilizer or fossil fuel combustion, for example, can leave cadmium behind.

Cadmium may decrease people's kidney function and bone density. As a result, international guidelines set safety limits on cadmium found in food. Growers with otherwise fertile fields need to grow food within these safe levels. Their livelihood depends on it.

"Our research aims to protect local producers and consumers by lowering the cadmium in vegetables. This gives producers the ability to grow safe, profitable crops," Paul says. "Consumers need to be able to safely eat what the farmers grow."

Paul worked with four additives: zinc and manganese salts, limestone, and biosolids compost. (Biosolids are nutrient-rich organic materials from sewage processed at a treatment facility. They are typically used to improve soil's physical and chemical characteristics and fertilize the soil.)

Although each works in a slightly different manner, the soil amendments generally solve the cadmium problem in two ways. They can prevent the passage of cadmium from the soil to the plant by offering competing nutrients. They can also chemically alter the cadmium so it is unavailable.

The researchers found that a combination of compost, zinc, and limestone brought the levels of cadmium in spinach down to nontoxic levels. The next step in this work is to better determine the ideal combination of the soil amendments. Researchers also want to study vegetables besides spinach, and other elements.

"Farmlands provide for us all," Paul says. "Rehabilitating agricultural fields, by removing heavy metals like cadmium, means healthier soils and healthier food."

For this research, Paul worked with Rufus Chaney and his team. Read more about this study in the Journal of Environmental Quality. This research was done in collaboration with researchers at the USDA Agricultural Research Service.

###

Media Contact

Susan Fisk
[email protected]
608-273-8091
@ASA_CSSA_SSSA

http://www.agronomy.org

Related Journal Article

http://dx.doi.org/10.2134/jeq2016.07.0251

Share12Tweet7Share2ShareShareShare1

Related Posts

Enhancing Soy 11S Globulin Extraction with Chaotropes

Enhancing Soy 11S Globulin Extraction with Chaotropes

August 28, 2025
Uncovered: Genetic Changes That Transformed Wild Horses into Rideable Companions

Uncovered: Genetic Changes That Transformed Wild Horses into Rideable Companions

August 28, 2025

Exploring Cellular Diversity Throughout Fruit Fly Metamorphosis

August 28, 2025

Nautilus Shells: Conservation, Crafts, and Legal Challenges

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Reveals Effective Medications for Alcohol Withdrawal

Progesterone Timing and Outcomes in Frozen Embryo Transfers

New Insights into Breast Reconstruction Preferences Among African American Women Published in Plastic and Reconstructive Surgery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.