• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Soft tissue restoration, blood vessel formation focus of $3M grant

Bioengineer by Bioengineer
July 7, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UNIVERSITY PARK, Pa. — The ability to regenerate and pattern blood vessels, the literal lifelines extending deep into soft tissues, remains an elusive milestone in regenerative medicine. Known as tissue revascularization, stimulating blood vessel growth and pattern formation in damaged or diseased tissues could accelerate the field of regenerative medicine, according to Penn State researchers. 

Soft tissue restoration

Credit: Kelby Hochreither/Penn State

UNIVERSITY PARK, Pa. — The ability to regenerate and pattern blood vessels, the literal lifelines extending deep into soft tissues, remains an elusive milestone in regenerative medicine. Known as tissue revascularization, stimulating blood vessel growth and pattern formation in damaged or diseased tissues could accelerate the field of regenerative medicine, according to Penn State researchers. 

With a four-year, $3 million grant awarded by the National Institutes of Health’s National Heart, Lung, and Blood Institute, Penn State chemical engineering and reconstructive surgery researchers plan to develop a new way to help restore soft tissue loss in patients through two coordinating revascularization techniques.

“Tissue revascularization is a bottleneck for regenerative medicine,” said principal investigator Amir Sheikhi, assistant professor of chemical engineering in the College of Engineering, who also has an affiliation with biomedical engineering. “This is an important award for the whole field, as we hope to develop a fundamentally new way to tackle the problem using a transdisciplinary team.” 

When repairing a traumatic injury, surgeons must be able to restore blood flow rapidly to grafts, flaps and engineered scaffolds. However, this is not always feasible using conventional techniques, according to researchers. 

The researchers plan to combine a class of protein-based granular hydrogel biomaterials pioneered by Sheikhi, with a microsurgical tactic known as vascular micropuncture, developed by co-principal investigator Dino Ravnic, Huck Chair in Regenerative Medicine and Surgical Sciences, associate professor of surgery at the Penn State College of Medicine, and an attending plastic surgeon at the Penn State Health Milton S. Hershey Medical Center.  

Bulk hydrogel scaffolds — polymer networks that can hold a large amount of water while maintaining their structure — have been used over the past few decades as a platform to restore soft tissues during surgical repair, according to Sheikhi, but they often suffer slow and random vascularization effects upon implantation.  

To address the limitations of bulk hydrogels, Sheikhi said he plans to engineer protein-based granular hydrogel scaffolds by attaching microscale hydrogel particles to each other.

“By adjusting the empty spaces among the hydrogel particles, we can regulate how cells interact with each other and assemble, guiding tissue architecture and the formation of new blood vessels,” Sheikhi said. 

At the same time, researchers will implement vascular micropuncture, where Ravnic and his team will puncture blood vessels with microneedles to accelerate the formation of new blood vessels. The tiny size of the needles ensures there is no blood clotting or significant bleeding.  

“Our microsurgical approach allows for targeted blood vessel formation without the use of any added growth factors or molecules,” Ravnic said. “This is exceedingly relevant to advancing tissue engineering and also in treating blood vessel-related conditions.”

The researchers will first test their approach using human cells cultured in vitro from patient samples. Once they establish a baseline understanding of the approach at the cellular level, they will test it in rodents.

The combination of the two techniques, researchers predict, will allow for new blood vessels to rapidly form in an architecturally organized manner. The hierarchical formation — the organization of blood vessels from big to medium to small — helps regulate blood flow, diffuse oxygen and modulate immune cells throughout reconstructed or injured soft tissue.

“The patterns of blood vessels should resemble tree branches, with a large trunk fanning out into smaller and smaller branches,” Sheikhi said. “The reason is that blood needs to flow from the main vessels deep within tissues through capillaries.” 

Shayn Peirce-Cottler, professor and chair of biomedical engineering at the University of Virginia, will collaborate on the grant. 



Share12Tweet8Share2ShareShareShare2

Related Posts

Integrating Health into UK Urban Development Policies

Integrating Health into UK Urban Development Policies

August 25, 2025
Bioluminescence Breakthroughs: Innovations in Disease Diagnosis

Bioluminescence Breakthroughs: Innovations in Disease Diagnosis

August 25, 2025

COVID-19’s Impact on Pediatric Healthcare Costs in Germany

August 25, 2025

Designing Multi-Epitope Vaccine Against Machupo Virus

August 25, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    139 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrating Health into UK Urban Development Policies

Bioluminescence Breakthroughs: Innovations in Disease Diagnosis

Transforming Innovation Culture in Agriculture with KPIs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.