• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Sociable crayfish get drunk more easily than loners

Bioengineer by Bioengineer
April 19, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The effects of alcohol can be unpredictable; while some consumers become amiable and affectionate, others turn into brutish thugs, and Jens Herberholz, from the University of Maryland, USA, explains that the cellular mechanisms that underpin the consequences of intoxication remain elusive. 'Alcohol is a complicated drug', he says, because it affects a wide range of cellular systems, making it difficult to unravel which factors contribute to alcohol sensitivity. However, humans are not the only animals that can suffer the consequences of over-indulgence; inebriated crayfish tail-flip animatedly while under the influence and become heavily intoxicated after lengthy exposures. Having studied the cellular mechanisms that underlie decision-making and aggression in these crustaceans, Herberholz was curious to learn how previous social experience might impact the effect of alcohol on crayfish. Herberholz and students Matthew Swierzbinski and Andrew Lazarchik discovered that isolated crayfish are less sensitive to the effects of alcohol than gregarious animals and they publish their discovery in Journal of Experimental Biology at http://jeb.biologists.org.

'How past social experience might shape the neurobehavioural effects of acute alcohol exposure is significantly understudied', says Herberholz, who initially teamed up with Swierzbinski and Lazarchik to find out how inebriated crayfish behave. Intoxicating individual crayfish – which had previously been housed together – in tanks of dilute alcohol ranging from 0.1 to 1 mol l?1, members of the lab filmed the animals as they initially began walking aggressively on stiff straight legs, before switching to tail-flipping as they became more intoxicated, and finally losing control as they rolled on their backs like incapacitated humans. And the effects took hold much faster at the highest concentrations, with the intoxicated animals enthusiastically tail-flipping after 20 min in the strongest alcohol, while the animals that were bathed in the most dilute alcohol took almost 2 h to feel the effects. However, when the trio tested the effects of the most concentrated alcohol on crayfish that had been held in isolation for a week before their drinking spree, the animals were far less sensitive to the alcohol, taking 28 min to become inebriated and begin tail-flipping.

But how were the effects of intoxication manifested in the neurons that control the crayfish's drunken behaviour? Inserting fine silver wires near the sensory nerves that excite the lateral giant interneuron – which controls the tail-flipping behaviour – Lazarchik recorded that the neural circuit became more sensitive in both the isolated and gregarious crayfish when the crustaceans were inebriated. However, the effects of alcohol became apparent more swiftly in the sociable crayfish's lateral giant interneuron, mirroring the animals' behavioural sensitivity. Swierzbinski was even able to use intracellular electrodes to measure a difference in the effects of alcohol in individual neurons in the isolated and communal crayfish. Paying tribute to Swierzbinski, Herberholz says, 'It takes talent and patience to collect data from enough animals'.

As the inhibitions of the drunk socialised crayfish were loosened more than those of the drunken loners, Herberholz suspects that the alcohol has more of an impact on the GABA neurotransmitter, which inhibits behaviour, in the gregarious crayfish. He also speculates that isolation could make humans less sensitive to the effects of alcohol, leading them to consume more. Herberholz says, 'Our study shows that social experience can change the sensitivity to acute alcohol'. He adds, 'Inebriated people…could potentially have different responses to alcohol depending on their prior social experience'. And, although he emphasizes that we are still a long way from confirming that social experience produces similar effects in the brain circuits of inebriated mammals (including humans), Herberholz is optimistic that, one day, drunken crayfish could help us to develop better treatments and preventative measures to support humans suffering from alcohol abuse.

###

IF REPORTING THIS STORY, PLEASE MENTION JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO:http://jeb.biologists.org/content/220/8/1516.abstract

REFERENCE: Swierzbinski, M. E., Lazarchik, A. R. and Herberholz, J. (2017). Prior social experience affects the behavioral and neural responses to acute alcohol in juvenile crayfish. J. Exp. Biol. 220, 1516-1523.

DOI: 10.1242/jeb.154419.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT [email protected]

Media Contact

Kathryn Knight
[email protected]
44-012-236-32871
@Co_Biologists

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Depression’s Impact on Blood Sugar Control

August 27, 2025

Polyions and Polyelectrolyte Complexes: Advancements for Brain Therapies

August 27, 2025

SLC4A11: Key Marker for Ovarian Cancer Treatment Response

August 27, 2025

Preparing Biomedical Engineers for an Evolving Future

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Depression’s Impact on Blood Sugar Control

Polyions and Polyelectrolyte Complexes: Advancements for Brain Therapies

SLC4A11: Key Marker for Ovarian Cancer Treatment Response

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.