• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Snowflakes swirling in turbulent air as they fall through a laser light sheet. Credit: Singh et al.

Bioengineer by Bioengineer
December 19, 2023
in Chemistry
Reading Time: 3 mins read
0
Snowflakes swirling in turbulent air
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, Dec. 19, 2023 – A winter wonderland calls to mind piles of fluffy, glistening snow. But to reach the ground, snowflakes are swept into the turbulent atmosphere, swirling through the air instead of plummeting directly to the ground.

Snowflakes swirling in turbulent air

Credit: Singh et al.

WASHINGTON, Dec. 19, 2023 – A winter wonderland calls to mind piles of fluffy, glistening snow. But to reach the ground, snowflakes are swept into the turbulent atmosphere, swirling through the air instead of plummeting directly to the ground.

The path of precipitation is complex but important to more than just skiers assessing the potential powder on their alpine vacation or school children hoping for a snow day. Determining snowflake fall speed is crucial for predicting weather patterns and measuring climate change.

In Physics of Fluids, from AIP Publishing, researchers from the University of Utah report snowflake accelerations in atmospheric turbulence. They found that regardless of turbulence or snowflake type, acceleration follows a universal statistical pattern that can be described as an exponential distribution.

“Even in the tropics, precipitation often starts its lifetime as snow,” said author Timothy Garrett. “How fast precipitation falls greatly affects storm lifetimes and trajectories and the extent of cloud cover that may amplify or diminish climate change. Just small tweaks in model representations of snowflake fall speed can have important impacts on both storm forecasting and how fast climate can be expected to warm for a given level of elevated greenhouse gas concentrations.”

Set up in a ski area near Salt Lake City, the team battled an unprecedented 900 inches of snow. They simultaneously filmed snowfall and measured atmospheric turbulence. Using a device they invented that employs a laser light sheet, they gathered information about snowflake mass, size, and density.   

“Generally, as expected, we find that low-density ‘fluffy’ snowflakes are most responsive to surrounding turbulent eddies,” said Garrett.

Despite the system’s complexity, the team found that snowflake accelerations follow an exponential frequency distribution with an exponent of three halves. In analyzing their data, they also discovered that fluctuations in the terminal velocity frequency distribution followed the same pattern.

“Snowflakes are complicated, and turbulence is irregular. The simplicity of the problem is actually quite mysterious, particularly given there is this correspondence between the variability of terminal velocities – something ostensibly independent of turbulence – and accelerations of the snowflakes as they are locally buffeted by turbulence,” said Garrett.

Because size determines terminal velocity, a possible explanation is that the turbulence in clouds that influences snowflake size is related to the turbulence measured at the ground. Yet the factor of three halves remains a mystery.

The researchers will revisit their experiment this winter, using a mist of oil droplets to obtain a closer look at turbulence and its impact on snowflakes.

###

The article “A universal scaling law for Lagrangian snowflake accelerations in atmospheric turbulence” is authored by Dhiraj Kumar Singh, Eric R. Pardyjak, and Timothy Garrett. It will appear in Physics of Fluids on Dec. 19, 2023 (DOI: 10.1063/5.0173359). After that date, it can be accessed at https://doi.org/10.1063/5.0173359.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://pubs.aip.org/aip/pof.

###



Journal

Physics of Fluids

DOI

10.1063/5.0173359

Article Title

A universal scaling law for Lagrangian snowflake accelerations in atmospheric turbulence

Article Publication Date

19-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1116 shares
    Share 446 Tweet 279
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex and Smoking Shape Bladder Mutation Patterns

Revolutionizing Object Detection: Global Influence and Trends

Research Lab Unveils Breakthrough in mRNA Cancer Vaccine Technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.