• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Snow algae thrive in high-elevation ice spires, an unlikely oasis for life

Bioengineer by Bioengineer
July 8, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Steve Schmidt / University of Colorado Boulder

High in the Andes Mountains, dagger-shaped ice spires house thriving microbial communities, offering an oasis for life in one of Earth’s harshest environments as well as a possible analogue for life on other planets.

The distinctive icy blade formations known as nieves penitentes (or, “penitent ones”) are named for their resemblance to praying monks in white robes and form in cold, dry conditions at elevations above 13,000 feet. The penitentes, which can range from a few inches to 15 feet high, are found in some of the most hostile conditions on Earth, with extreme winds, temperature fluctuations and high UV radiation exposure due to the thin atmosphere.

And yet, as a recently published study led by University of Colorado Boulder student researchers finds, these spires offer shelter for microbes by providing a water source in an otherwise arid, nutrient-poor environment.

In March 2016, CU Boulder students and faculty members traveled to Volcán Llullaillaco in Chile, the world’s second-highest volcano. The two-week expedition into the arid landscape, planned in collaboration with their Chilean colleagues, was no easy feat.

“This is a very remote area that’s difficult to access,” said Steve Schmidt, a professor in CU Boulder’s Department of Ecology and Evolutionary Biology (EBIO) and a co-author of the study. “The entire back of one of our pickup trucks had to be filled with barrels of drinking water. It’s no trivial thing to go out there, and that’s one of the reasons these formations haven’t been studied much.”

After reaching the penitente fields at 16,000 feet above sea level, the scientists noticed patches of red coloration, a telltale sign of microbial activity that has been previously observed in other snow and ice formations around the world.

Upon bringing back samples for analysis, the researchers confirmed the presence of algal species Chlamydomonas and Chloromonas in the ice, the first documentation of snow algae or any other life forms in the penitentes.

“Snow algae have been commonly found throughout the cryosphere on both ice and snow patches, but our finding demonstrated their presence for the first time at the extreme elevation of a hyper-arid site,” said Lara Vimercati, lead author of the study and a doctoral researcher in EBIO. “Interestingly, most of the snow algae found at this site are closely related to other known snow algae from alpine and polar environments.”

The new findings add to scientists’ understanding of the limits of life on Earth, but may also have implications for the search for alien life. Penitente-like formations have recently been discovered on Pluto and are speculated to exist on Europa, one of Jupiter’s moons. The Atacama region in Chile is also considered to be the best Earth analogue for the soils of Mars.

“We’re generally interested in the adaptations of organisms to extreme environments,” Schmidt said. “This could be a good place to look for upper limits of life.”

“Our study shows how no matter how challenging the environmental conditions, life finds a way when there is availability of liquid water,” Vimercati said.

###

Additional co-authors of the research include Adam Solon and Alexandra Krinsky of CU Boulder; John Darcy of the University of Colorado Denver; Dorota Porazinska of the University of Florida; and Pablo Arán and Cristina Dorador of the Universidad de Antofagasta (Chile). The work was supported by the National Science Foundation, the United States Air Force Office of Scientific Research and the National Geographic Society Committee for Research and Exploration.

Media Contact
Trent Knoss
[email protected]

Related Journal Article

http://dx.doi.org/10.1080/15230430.2019.1618115

Tags: Earth ScienceMicrobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025
Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

Unraveling CpG Island Methylation Through Read Bias Analysis

November 2, 2025

Unraveling Resistance Genes in Photorhabdus Bacteria

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Upward Bullying in China’s Nurse Managers

Quantum Network Entanglement Verified Without Measurement Devices

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.