• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Sniffing women’s tears reduces aggressive behavior in men

Bioengineer by Bioengineer
December 21, 2023
in Chemistry
Reading Time: 3 mins read
0
Sniffing women’s tears reduces aggressive behavior in men
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research, publishing December 21st in the open access journal in PLOS Biology, shows that tears from women contain chemicals that block aggression in men. The study led by Shani Agron at the Weizmann Institute of Science, Israel, finds that sniffing tears leads to reduced brain activity related to aggression, which results is less aggressive behavior.

Sniffing women’s tears reduces aggressive behavior in men

Credit: British Library, Unsplash (CC0, https://creativecommons.org/publicdomain/zero/1.0/)

New research, publishing December 21st in the open access journal in PLOS Biology, shows that tears from women contain chemicals that block aggression in men. The study led by Shani Agron at the Weizmann Institute of Science, Israel, finds that sniffing tears leads to reduced brain activity related to aggression, which results is less aggressive behavior.

Male aggression in rodents is known to be blocked when they smell female tears. This is an example of social chemosignaling, a process that is common in animals but less common—or less understood—in humans. To determine whether tears have the same affect in people, the researchers exposed a group of men to either women’s emotional tears or saline while they played a two-person game. The game was designed to elicit aggressive behavior against the other player, whom the men were led to believe was cheating. When given the opportunity, the men could get revenge on the other player by causing them lose money. The men did not know what they were sniffing and could not distinguish between the tears or the saline, which were both odorless.

Revenge-seeking aggressive behavior during the game dropped more than 40% after the men sniffed women’s emotional tears. When repeated in an MRI scanner, functional imaging showed two aggression-related brain regions—the prefrontal cortex and anterior insula—that became more active when the men were provoked during the game, but did not become as active in the same situations when the men were sniffing the tears. Individually, the greater the difference in this brain activity, the less often the player took revenge during the game. Finding this link between tears, brain activity, and aggressive behavior implies that social chemosignaling is a factor in human aggression, not simply an animal curiosity.

The authors add, “We found that just like in mice, human tears contain a chemical signal that blocks conspecific male aggression. This goes against the notion that emotional tears are uniquely human.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002442

Citation: Agron S, de March CA, Weissgross R, Mishor E, Gorodisky L, Weiss T, et al. (2023) A chemical signal in human female tears lowers aggression in males. PLoS Biol 21(12): e3002442. https://doi.org/10.1371/journal.pbio.3002442

Author Countries: Israel, United States

Funding: This work was funded by an ISF grant (714103) awarded to NS, and by support to the Sobel lab from the Rob and Cheryl McEwen Fund for Brain Research. Additional support from National Science Foundation grant 1555919 to HM, National Institute of Health grant DC014423 and DC016224 to HM, National Institute of Health grant K99DC018333 to CAdM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002442

Method of Research

Observational study

Subject of Research

People

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.