• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

SMURF1 provides targeted approach to preventing cocaine addiction relapse

Bioengineer by Bioengineer
August 15, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Douglas Levere, University at Buffalo

BUFFALO, N.Y. — A class of proteins that has generated significant interest for its potential to treat diseases, has for the first time, been shown to be effective in reducing relapse, or drug-seeking behaviors, in a preclinical study.

Published online in July in Biological Psychiatry, the University at Buffalo research reveals important new information about the molecular changes that occur in the brain when an individual takes cocaine, and how these molecules can be targeted to reduce drug-seeking behaviors during withdrawal.

"One of the greatest challenges with addiction is the persistent vulnerability to relapse," said Craig Werner, PhD, first author on the paper and a postdoctoral fellow in the Department of Pharmacology and Toxicology in the Jacobs School of Medicine and Biomedical Sciences at UB. "We know that relapse rates have remained very stable despite many medical advancements, so the big question is, how can we better understand drug addiction so that we can reduce the risk of relapse? We wanted to look at withdrawal and to see what happens in the brain that maintains these relapse behaviors."

Werner is a researcher in the laboratory of David Dietz, PhD, senior author and chair of the Department of Pharmacology and Toxicology.

The publication focuses on a class of proteins called E3 ubiquitin ligases, which work by tagging other proteins to be degraded.

"We are the first group to look at this class of proteins in drug addiction," said Werner, noting that this class of proteins regulates the degradation of specific sets of other proteins in a highly selective manner. "If you indirectly affect a protein through one of these E3 ubiquitin ligases, you can modulate a signaling pathway without targeting it directly."

What is also exciting about these proteins, he said, is that they are changed in disease states. "So the goal is to figure out how to return expression back to what they are in non-disease states, or in this case, how to return the neuroadaptations back to the non-addicted state," he explained.

The targeted protein they studied is known as Smurf1, short for Smad ubiquitinylation regulatory factor 1. Werner and his colleagues found that cocaine addiction in lab animals caused a decrease in Smurf1 and that after addiction, during the withdrawal period when the animals were deprived of cocaine, there was a reduction in Smurf1 protein.

"We think the cell uses this protein, and those that it interacts with, to maintain vulnerability to relapse," he said. "So we hypothesized that if we increased Smurf1, we could make the animals less vulnerable to relapse and actually reduce cocaine-seeking behavior."

When the researchers used viral gene therapy to overexpress Smurf1 in the animals after they had been exposed to cocaine, it reduced the relapsing behavior.

"When we reversed what cocaine does to the brain, by reversing Smurf1 levels, the animal reduced their drug-seeking behaviors," D

Werner and Dietz said that the next step is to conduct more studies on the role of Smurf1 in addiction and other proteins in this class with the hope that such studies will provide the foundation for an effective therapeutic intervention for drug addiction.

###

The National Institutes of Health funded the research.

Co-authors with Dietz and Werner are Rathipriya Viswanathan; Jennifer A. Martin; Pedro H. Gobira; Swarup Mitra; Shruthi A. Thomas; Zi-Jun Wang; Jian-Feng Liu; Andrew F. Stewart; Jun-Xu Li and Amy Gancarz, all of the UB Department of Pharmacology and Toxicology program in neuroscience, and Rachael Neve from Massachusetts General Hospital.

Media Contact

Ellen Goldbaum
[email protected]
716-645-4605
@UBNewsSource

http://www.buffalo.edu

Original Source

http://www.buffalo.edu/news/releases/2018/08/013.html

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring Gut Microbiome’s Role in Aging

October 11, 2025

Microplastics: New Threat to Osteoarthritis Uncovered

October 11, 2025

How ECMO Cannulation Shapes Hemodynamics and Hemolysis Risks

October 11, 2025

Exploring Behavior Change Techniques in Mobile Apps

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1216 shares
    Share 486 Tweet 304
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Gut Microbiome’s Role in Aging

Microplastics: New Threat to Osteoarthritis Uncovered

How ECMO Cannulation Shapes Hemodynamics and Hemolysis Risks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.