• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Smells like evolution: Fruit flies reveal surprises in chemical sensing

Bioengineer by Bioengineer
February 5, 2024
in Biology
Reading Time: 2 mins read
0
Fig. 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study in Nature Communications unveils the hidden world of sensory evolution in fruit flies. By delving into the genes and cells behind their delicate noses and tongues, researchers have discovered surprising secrets about how these tiny insects adapt their senses to different environments. 

Fig. 1

Credit: Gwénaëlle Bontonou et. al./Nature Communications

A new study in Nature Communications unveils the hidden world of sensory evolution in fruit flies. By delving into the genes and cells behind their delicate noses and tongues, researchers have discovered surprising secrets about how these tiny insects adapt their senses to different environments. 

“Imagine a world where a ripe peach tastes and smells like tangy vinegar to one fly, but like a burst of summer to another,” explains principal author of the study Dr Roman Arguello, a Lecturer in Genetics, Genomics and Fundamental Cell Biology at Queen Mary University of London. “Our study shows that this is not just possible, but it’s actually quite common.” 

The research team analysed the gene expression patterns in five key scent-detecting tissues across six different Drosophila species. This comprehensive approach allowed them to delve deeper than ever before into the molecular underpinnings of smell. 

One surprising discovery was the prevalence of “stabilising selection,” a force that keeps most genes expressed at the same levels across generations. However, within this sea of stability, the researchers found thousands of genes that had undergone significant changes in expression, shaping the unique olfactory landscapes of different fly species. 

“It’s like finding hidden islands of diversity within a vast ocean of uniformity,” says Dr Arguello. “These changes in gene expression tell us about the evolution of new smells, new sensitivities, and even new ways of using scent to navigate the world.” 

The study also reveals intriguing differences between the sexes. In fruit flies, as in many other animals, males and females often experience the world through different olfactory lenses. The researchers identified a surprising excess of male-biased gene expression in the front legs of D. melanogaster, suggesting that these limbs play a crucial role in male-specific scent detection. 

“These findings open up exciting new avenues for understanding how sex differences evolve and how they impact animal behavior,” says Dr Arguello. 

The study’s implications extend beyond the fascinating world of flies. It provides valuable insights into the general principles of how sensory systems evolve, offering clues to understanding how other animals, including humans, perceive their chemical environments. 



Journal

Nature Communications

Article Title

Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids

Article Publication Date

5-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Goat Genome Study Uncovers Genes for Adaptation

October 26, 2025
blank

Exploring TIFY Family Genes in Panax Notoginseng

October 26, 2025

Genetic Diversity and Cytotype Insights in Platostoma

October 26, 2025

Exploring Archaeal Promoters with Explainable CNN Models

October 26, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1283 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    195 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Midwifery Skills with Virtual Reality Learning

Goat Genome Study Uncovers Genes for Adaptation

Effective Neonatal Tetanus Treatment: A Nigerian Case Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.