• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Smarter MRI Diagnosis with Nano MRI Lamp

Bioengineer by Bioengineer
February 6, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: IBS

A research team led by CHEON Jinwoo at the Center for Nanomedicine, within the Institute for Basic Science (IBS), developed the Nano MRI Lamp: A new technology platform that tunes the magnetic resonance imaging (MRI) signals "ON" only in the presence of the targeted disease. Published in Nature Materials, this study can overcome the limitations of existing MRI contrast agents.

MRI is an increasingly popular non-invasive technique for diagnosis and, importantly, does not use harmful radiation. Some tissues show a natural contrast on MRI, but for some specific types of imaging, patients are administered a MRI contrast agent to enhance the difference between the target area and the rest of the body. "Typical MRI contrast agents, like gadolinium, are injected in an "ON" state and distributed across the whole biological system with relatively large background signal," explains Director Cheon. "We found a new principle to switch the MRI contrast agent "ON" only in the location of the target." IBS scientists discovered how to switch the signal ON/OFF by using the Nano MRI Lamp.

The Nano MRI Lamp technology consists of two magnetic materials: A quencher (magnetic nanoparticle) and an enhancer (MRI contrast agent). The switch is due to the distance between the two. When the two materials are at a critical distance, farther than 7 nanometers (nm), the MRI signal is "ON", whereas when they are placed closer than 7 nm, the MRI signal is "OFF". The researchers named this phenomenon Magnetic REsonance Tuning (MRET), which is analogous to the powerful optical sensing technique called Fluorescence Resonance Energy Transfer (FRET).

The researchers tested the Nano MRI Lamp for cancer diagnosis. They detected the presence of an enzyme that can induce tumor metastasis, MMP-2 (matrix metalloproteinase-2) in mice with cancer. They connected the two magnetic materials with a linker that is naturally cleaved by MMP-2. Since the linker keeps the two materials close to each other, the MRI signal was "OFF". However, in the presence of the cancer, the linker is cleaved by MMP-2, which cause the two materials to be separated and the MRI signal switched "ON". Therefore, the MRI signal indicated the location of MMP-2, and the tumor. The scientists also found that the brightness of the MRI signal correlates with the concentration of MMP-2 in the cancerous tissue.

Most importantly, the Nano MRI Lamp remains switched off until it meets a biomarker associated with a specific disease, allowing higher sensitivity. "The current contrast agent is like using a flashlight during a sunny day: Its effect is limited. Instead, this new technology is like using a flash light at night and therefore more useful," explains Cheon.

Beyond cancer diagnosis, the Nano MRI Lamp can, in principle, be applied to investigate a variety of biological events, such as enzymolysis, pH variation, protein-protein interactions, etc. IBS scientists expect that it would be useful for both in vitro and in vivo diagnostics.

"Although we still have a long way to go, we established the principle and believe that the MRET and Nano MRI Lamp can serve as a novel sensing principle to augment the exploration of a wide range of biological systems," concludes Cheon. The research group is now working on developing safer and smarter multitasking contrast agents, which can simultaneously record and interpret multiple biological targets, and eventually allow a better understanding of biological processes and accurate diagnosis of diseases.

###

Media Contact

Dahee Carol Kim
[email protected]
@IBS_media

http://www.ibs.re.kr/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Leading Scientific Breakthroughs Honored at ACC Middle East Conference

October 7, 2025
blank

Study by SFU and Wageningen University Links River Widening to Increased Severity of Floods

October 7, 2025

Reelin: A Promising Protein for Gut Repair and Depression Treatment

October 7, 2025

FIU Cybersecurity Experts Unveil Midflight Defense Mechanism to Prevent Drone Hijacking

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    889 shares
    Share 355 Tweet 222
  • New Study Reveals the Science Behind Exercise and Weight Loss

    98 shares
    Share 39 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leading Scientific Breakthroughs Honored at ACC Middle East Conference

Study by SFU and Wageningen University Links River Widening to Increased Severity of Floods

Reelin: A Promising Protein for Gut Repair and Depression Treatment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.