• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Smart reactions through online design of catalytic pockets

Bioengineer by Bioengineer
November 26, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2019 Laura Falivene


Many chemical processes depend on catalysts to facilitate reactions that would otherwise proceed very slowly, or not at all. An innovative procedure for visually representing the structure of catalysts via computer-assisted design, developed at KAUST, is helping researchers build better catalysts.

The software generates topographic steric maps and has been developed by Luigi Cavallo’s research group at the KAUST Catalysis Research Center. The source code required is now freely available online.

Scientists from 65 countries have already used the interfaced web application, reports postdoctoral fellow Laura Falivene, and they often call on the KAUST researchers for more information. The team has now published a perspective article explaining in detail the creation and use of the topographic steric maps.

“The power of visualization is of great value in chemistry where much time is spent imagining things that we cannot see,” Falivene says.

Each map uses color-coding to convey the three-dimensional geometry of the chemical groups forming the functional heart of a catalyst, known as the catalytic pocket (see images). The data to build a map can come from several techniques, such as x-ray crystallography and quantum mechanics calculations, which indicate the identity and position of each atom in the catalytic pocket.

This helps researchers better understand how known catalysts function, while also guiding exploration of chemical modifications that could adjust the structures to make better catalysts.

“We are building an important bridge between the experimental and computational approaches,” Falivene explains. She adds that the growing popularity of the topographic steric maps helps other chemists to appreciate the significance of the work done by theoretical chemists like herself.

“Using the maps explains the importance of combining experimental and theoretical approaches better than my words have been able to do,” she observes. “They can be used with any class of catalysts, from reactivity promoted by simple organic molecules, to that promoted by transition metal complexes, and large metalloenzymes, where a metal is hosted inside a protein.” Metalloenzymes catalyze some of the most crucial reactions of life.

Work at KAUST continues to enhance the method including developing machine learning approaches to rapidly screen the potential of possible new catalysts.

“This perspective article is important because it officially states the validity and value of the topic,” says Falivene. She describes it as a new starting point that brings together the early, less formal achievements to promote wider use and further development of the maps.

###

Media Contact
Carolyn Unck
[email protected]
966-054-470-0408

Original Source

https://discovery.kaust.edu.sa/en/article/909/smart-reactions-through-online-design-of-catalytic-pockets

Related Journal Article

http://dx.doi.org/10.1038/s41557-019-0319-5

Tags: BiochemistryChemistry/Physics/Materials SciencesOpticsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

September 11, 2025
blank

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.