• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Smart multi-layered magnetic material acts as an electric switch

Bioengineer by Bioengineer
February 27, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The nanometric-size islands of magnetic metal sporadically spread between vacuum gaps display unique conductive properties under a magnetic field. In a recent study published in EPJ Plus, Anatoliy Chornous from Sumy State University in Ukraine and colleagues found that the vacuum gaps impede the direct magnetic alignment between the adjacent islands — which depends on the external magnetic field — while allowing electron tunneling between them. Such externally controlled conducting behaviour opens the door for applications in electronics with magnetic field sensors — which are used to read data on hard disk drives — biosensors and microelectromechanical systems (MEMS), as well as in spintronics with magnetic devices used to increase memory density.

At the quantum scale, materials characterised by thin-film structures composed of alternating magnetic and non-magnetic layers behave in a way that produces what is referred to as the Giant Magnetoresistance (GMR) effect. This discovery garnered Albert Fert and Peter Grünberg the 2007 Nobel Prize in Physics. In this study, the authors studied cobalt islands of between 5 nanometers (nm) and 25 nm, as well as iron islands of between 10 nm and 30 nm.

They found that the maximum values of the electric conductivity under an external magnetic field are obtained when the islands have a width of between 3 nm and 5 nm, with vacuum barriers of between 1 nm and 3 nm between them. However, they also observed that the tunnelling of electrons between the islands depends on the relative orientation of the direction of magnetisation in the adjacent islands and on the external magnetic field.

In addition, they determined that the electric conductivity is at a maximum when the magnetic moments in the adjacent granules are oriented in parallel, which leads to the tunnel magnetoresistance effect (TMR). The value of the tunneling magnetoresistance essentially depends on the interface properties of the insulator material between those islands.

###

Reference:

A.M. Chornous, Yu.O. Shkurdoda, V.B. Loboda, Yu.M. Shabelnyk and V.O. Kravchenko (2017), Influence of the surface morphology on the magnetoresistance of ultrathin films of ferromagnetic metals and their alloys, Eur. Phys. J. Plus 132:58, DOI 10.1140/epjp/i2017-11327-x

Media Contact

Sabine Lehr
[email protected]
49-622-148-78336
@SpringerNature

http://www.springer.com

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Unlocking Ophthalmic Potential with Cord Blood PRP Analysis

October 11, 2025
blank

Both Xenopus laevis Sub-Genomes Undergo Similar Evolution

October 11, 2025

AI Revolutionizes Battery Lifespan and Performance Insights

October 11, 2025

Giant Omphaloceles: Treatment Delays Examined in Review

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1216 shares
    Share 486 Tweet 304
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Ophthalmic Potential with Cord Blood PRP Analysis

Both Xenopus laevis Sub-Genomes Undergo Similar Evolution

AI Revolutionizes Battery Lifespan and Performance Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.