• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Small, hardy planets most likely to survive death of their stars

Bioengineer by Bioengineer
May 14, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Small, hardy planets packed with dense elements have the best chance of avoiding being crushed and swallowed up when their host star dies, new research from the University of Warwick has found

IMAGE

Credit: University of Warwick/Mark Garlick

  • Astrophysicists from University of Warwick publish a ‘survival guide’ for exoplanets
  • Tough, rocky planets are most likely to survive
  • Most planets will be pulled towards a star when it dies, but some may be pushed outwards instead
  • Research will guide astronomers on where to search for the next exoplanet finds

Small, hardy planets packed with dense elements have the best chance of avoiding being crushed and swallowed up when their host star dies, new research from the University of Warwick has found.

Astrophysicists from the Astronomy and Astrophysics Group have modelled the chances of different planets being destroyed by tidal forces when their host stars become white dwarfs and have determined the most significant factors that decide whether they avoid destruction.

Their ‘survival guide’ for exoplanets could help guide astronomers locate potential exoplanets around white dwarf stars, as a new generation of even more powerful telescopes is being developed to search for them. Their research is published in the Monthly Notices of the Royal Astronomical Society.

Most stars like our own Sun will run out of fuel eventually and shrink and become white dwarfs. Some orbiting bodies that aren’t destroyed in the maelstrom caused when the star blasts away its outer layers will then be subjected to shifts in tidal forces as the star collapses and becomes super-dense. The gravitational forces exerted on any orbiting planets would be intense and would potentially drag them into new orbits, even pushing some further out in their solar systems.

By modelling the effects of a white dwarf’s change in gravity on orbiting rocky bodies, the researchers have determined the most likely factors that will cause a planet to move within the star’s ‘destruction radius’; the distance from the star where an object held together only by its own gravity will disintegrate due to tidal forces. Within the destruction radius a disc of debris from destroyed planets will form.

Although a planet’s survival is dependent on many factors, the models reveal that the more massive the planet, the more likely that it will be destroyed through tidal interactions.

But destruction is not certain based on mass alone: low viscosity exo-Earths are easily swallowed even if they reside at separations within five times the distance between the centre of the white dwarf and its destruction radius. Saturn’s moon Enceladus – often described as a ‘dirty snowball’ – is a good example of a homogeneous very low viscosity planet.

High viscosity exo-Earths are easily swallowed only if they reside at distances within twice the separation between the centre of the white dwarf and its destruction radius. These planets would be composed entirely of a dense core of heavier elements, with a similar composition to the ‘heavy metal’ planet discovered by another team of University of Warwick astronomers recently. That planet has avoided engulfment because it is as small as an asteroid.

Dr Dimitri Veras, from the University of Warwick’s Department of Physics, said: “The paper is one of the first-ever dedicated studies investigating tidal effects between white dwarfs and planets. This type of modelling will have increasing relevance in upcoming years, when additional rocky bodies are likely to be discovered close to white dwarfs.”

“Our study, while sophisticated in several respects, only treats homogenous rocky planets that are consistent in their structure throughout. A multi-layer planet, like Earth, would be significantly more complicated to calculate but we are investigating the feasibility of doing so too.”

Distance from the star, like the planet’s mass, has a robust correlation with survival or engulfment. There will always be a safe distance from the star and this safe distance depends on many parameters. In general, a rocky homogenous planet which resides at a location from the white dwarf which is beyond about one-third of the distance between Mercury and the Sun is guaranteed to avoid being swallowed from tidal forces.

Dr Veras said: “Our study prompts astronomers to look for rocky planets close to – but just outside of – the destruction radius of the white dwarf. So far observations have focussed on this inner region, but our study demonstrates that rocky planets can survive tidal interactions with the white dwarf in a way which pushes the planets slightly outward.

“Astronomers should also look for geometric signatures in known debris discs. These signatures could be the result of gravitational perturbations from a planet which resides just outside of the destruction radius. In these cases, the discs would have been formed earlier by the crushing of asteroids which periodically approach and enter the destruction radius of the white dwarf.”

###

The research received support from the UK’s Science and Technology Facilities Council.

‘Orbital relaxation and excitation of planets tidally interacting with white dwarfs’ published in Monthly Notices of the Royal Astronomical Society. DOI: https://doi.org/10.1093/mnras/stz965

Media Contact
Peter Thorley
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/mnras/stz965

Tags: AstrophysicsPlanets/MoonsSpace/Planetary ScienceStars/The Sun
Share12Tweet7Share2ShareShareShare1

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1131 shares
    Share 452 Tweet 282
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Magnesium Oxide Nanoparticles Combat Malaria: A Study

Experts caution that prostate testing may miss targeting those who would benefit most

Neonatal Hypothermia Insights from Northern Uganda Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.