• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Small genetic differences turn plants into better teams

Bioengineer by Bioengineer
November 5, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Zurich

The ongoing worldwide loss of biological diversity is one of the most pressing challenges humankind currently faces. Biodiversity is vital to humans not least because it supports ecosystem services such as the provision of clean water and the production of biomass and food. Many experiments have shown that diverse communities of organisms function better in this regard than monocultures. "In mixed communities plants engage in a kind of division of labor that increases efficiency and improves the functioning of the community as a whole," explains Pascal Niklaus from the Department of Evolutionary Biology and Environmental Studies of the University of Zurich.

Nevertheless, modern agricultural practice mainly relies on plant varieties that are genetically uniform, since they make it easier to grow and process crops. The benefits of diverse communities therefore remain untapped, also because the underlying mechanisms are not yet fully understood. "Despite intensive research, we currently don't know which properties make plants good players in such mixed teams," says Samuel Wüst, main author of the study.

Plants grow better in mixed teams

The two researchers addressed this question by combining modern genetic and ecological approaches. As a test system, they focused on common wallcress (Arabidopsis thaliana), a small crucifer that is genetically well documented. They used systematic crosses of varieties of these plants, which were grown in pots in different combinations. After a few weeks, the researchers weighed the resulting biomass, which allowed them to compare the growth of the plants. As expected, pots with mixtures of different crosses were indeed more productive on average.

Small genetic differences improve yield

Using statistical analyses, the researchers then related the yield gain in mixed communities to the genetic makeup of the crosses. The genetic map they obtained in this way enabled them to identify the parts of the genome that made the combination of plants good mixed teams. They found that even the smallest genetic differences between plants were enough to increase their combined yield.

"We were very surprised that complex and poorly understood properties such as the suitability to form a well-performing mixture had such a simple genetic cause," says Samuel Wüst. He thinks that their method may help to breed plants that are good team players and thus yield more crops. "Our insights open up completely new avenues in agriculture," adds Wüst.

###

Media Contact

Pascal Niklaus
[email protected]
41-446-353-413
@uzh_news

http://www.uzh.ch

Original Source

https://www.media.uzh.ch/en/Press-Releases/2018/plant-teams.html http://dx.doi.org/10.1038/s41559-018-0708-y

Share12Tweet8Share2ShareShareShare2

Related Posts

Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

October 12, 2025
Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

October 12, 2025

Brainstem Connectivity Differences by Sex and Menopause

October 12, 2025

ERβ Provides Gender-Specific Defense Against Alzheimer’s Disease

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1226 shares
    Share 490 Tweet 306
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring 25 Key Themes in Integrated Child Care

AI Enhances Skull Stripping Techniques Throughout Lifespan

Transforming Agrifood Jobs and Compensation Structures

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.