• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices

Bioengineer by Bioengineer
May 13, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Journal of Materials Chemistry A

The collaborative effort of researchers from Skoltech, SB RAS Nikolaev Institute of Inorganic Chemistry, and RAS Institute for Problems of Chemical Physics translated into the development of advanced lead-free semiconductors for solar cells, based on complex antimony and bismuth halides. The results of their study were published in the Journal of Materials Chemistry A and showcased on the journal’s cover page.

The solar cells based on complex lead halides with a perovskite-type structure are coming into sharp focus thanks to their low cost, ease of manufacturing and enhanced light-conversion efficiency of >24%. However, their mass production and wider use are hampered by toxicity and low stability of complex lead halides. To overcome these obstacles, researchers worldwide are working on designing alternative lead-free photoactive materials, particularly, based on bismuth and antimony halides. So far these solar cells have displayed poor light-conversion performance, which suggests that the charge carriers are not generated efficiently enough in the photoactive layer or have difficulty reaching the electrodes.

The team of researchers from Skoltech, SB RAS Nikolaev Institute of Inorganic Chemistry, and RAS Institute for Problems of Chemical Physics showed that the actual reason behind this is the non-optimal structure of the bismuth and antimony compounds.

“We found out that unhindered vertical transport of holes and electrons, which is essential for efficient operation of solar cells, is prevented by the low dimensionality of the anionic sublattice in these compounds, which is typically 0D and sometimes 1D or very rarely 2-D. As a consequence, this class of materials can work efficiently in lateral photodetectors but not in solar cells,” explains professor Pavel Troshin of the Skoltech Center for Energy Science and Technology.

Earlier, the same team suggested increasing the lattice dimensionality in bismuth and antimony complexes by introducing linker molecules, such as molecular iodine. Using this approach, which was presented in Chemistry: A European Journal, the scientists have succeeded in creating new semiconductor materials based on complex halides of bismuth and antimony with iodine, which are currently the subject of intensive research worldwide.

The same team has also designed a fundamentally new family of solar cell materials based on the perovskite-like complex antimony bromides, ASbBr6(where A is a positively charged organic ion). The ASbBr6-based solar cells have exhibited record-high light-conversion efficiency for antimony and bismuth halides. The results of this study were published in the journal Advanced Energy Materials. According to the project lead Pavel Troshin, a real breakthrough in their research came with this study, which opens up new horizons in the development of new semiconductor materials for perovskite electronics.

###

This study was made available online in December 2018 ahead of final publication in print in March 2019.

Media Contact
Alina Chernova
[email protected]

Original Source

https://www.skoltech.ru/en/2019/05/skoltech-researchers-developed-new-perovskite-inspired-semiconductors-for-electronic-devices/

Related Journal Article

http://dx.doi.org/10.1039/C8TA09204D

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

Transforming Pesticide Residues into Plant Nutrients: A Breakthrough for Cleaner Soils and Healthier Crops

Transforming Pesticide Residues into Plant Nutrients: A Breakthrough for Cleaner Soils and Healthier Crops

September 24, 2025
blank

Elizabeth Hinde and Jorge Alegre-Cebollada Named Recipients of 2026 Michael and Kate Bárány Award

September 23, 2025

Revolutionary 3D-Printed Glass Emerging as a New Bone Substitute

September 23, 2025

DGIST Pioneers “Artificial Plant” Technology to Purify Radioactive Soil Using Only Sunlight

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

Advanced Broadband Photodetector Enables Day-Night Recognition and Distance Measurement

New Peer-Reviewed EWG Study Reveals Certain Produce Increases Pesticide Levels in Humans

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.