• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Skipping tiny stones into a quantum whirlpool

Bioengineer by Bioengineer
May 12, 2022
in Chemistry
Reading Time: 3 mins read
0
Makoto Tsubota
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have observed the vortices that form in superfluid helium by blasting silicon nanoparticles at them using laser ablation. The after observing the patterns of light scattering off the silicon nanoparticles Osaka Metropolitan University scientists performed a massive simulation of quantum vortex dynamics which confirmed that the observed nanoparticle swirls and loops were caused by quantum vortices. This work opens up new possibilities in optical research for other quantum properties of superfluid helium, such as the optical manipulation of quantized vortices due to the strong interaction between light and silicon nanoparticles.

Makoto Tsubota

Credit: M. Tsubota, OMU

Researchers have observed the vortices that form in superfluid helium by blasting silicon nanoparticles at them using laser ablation. The after observing the patterns of light scattering off the silicon nanoparticles Osaka Metropolitan University scientists performed a massive simulation of quantum vortex dynamics which confirmed that the observed nanoparticle swirls and loops were caused by quantum vortices. This work opens up new possibilities in optical research for other quantum properties of superfluid helium, such as the optical manipulation of quantized vortices due to the strong interaction between light and silicon nanoparticles.

The rules of quantum mechanics may seem very foreign; particles can act like waves and waves can act like particles. Weird quantum behavior is normally only found on a very small scale. However, when certain materials, like helium-4, are cooled to very low temperatures, the “waviness” of the particles has effects apparent even at the macroscopic scales.

“Supercooled” helium is an example of a Bose-Einstein condensation, where the waves representing atoms overlap until the whole fluid acts like a single massive particle. This process has no classical analogue and is a useful system for testing theories of quantum mechanics, because the transition to a superfluid in helium-4 occurs at relatively accessible temperatures. However, there is still a need to be able to visualize the motion of the superfluid.

Now, a researcher team has used silicon nanoparticles to help visualize the features of superfluid helium, similar to skipping stones across a river, to help visualize the flow of water. One of the special properties of superfluid helium is that any rotational motion can only occur in the form of quantized vortices. These are tiny, discrete whirlpools that each carry a fixed amount of angular momentum. The scientists used the nanoparticle “stones” to study the process of vortex reconnection, in which lines of vortices coalesce and exchange their parts. Because the light scatters off the nanoparticles, the vortex lines they are attracted to were clearly visible.

Osaka Metropolitan University researcher Makoto Tsubota led the team simulating the observed behavior of the silicon nanoparticles. “We performed the numerical simulation of quantized vortices fitted to the case of the experiments. The simulated vortices were the same as in observations! This agreement strongly supports that what we actually observed was the motion of quantized vortices,” exclaimed Professor Tsubota.

Moreover, Professor Tsubota noted, “A quantized vortex is a typical example of topological defects. Topological defects appear in various systems like superfluid helium, cold atoms, superconductors, liquid crystal, cosmology, etc. The present discovery will pave a novel way for investigating topological defects in these various systems.”

The article, “Visualization of quantized vortex reconnection enabled by laser ablation,” was published in Science Advances at DOI: https://doi.org/10.1126/sciadv.abn1143.

###

About OMU
Osaka Metropolitan University is a new public university formed by a merger between Osaka City University and Osaka Prefecture University in April 2022. For more science news, see https://www.upc-osaka.ac.jp/new-univ/en-research/, and follow @OsakaMetUniv_en, and search #OMUScience.



Journal

Science Advances

DOI

10.1126/sciadv.abn1143

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Visualization of quantized vortex reconnection enabled by laser ablation

Article Publication Date

4-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Precise 1,3-Hydrofunctionalization of Trisubstituted Alkenes

Precise 1,3-Hydrofunctionalization of Trisubstituted Alkenes

September 18, 2025
Cobalt-Free PSFNRu Nanocomposites Assembled In Situ as Bifunctional Electrodes for Direct Ammonia Symmetric Solid Oxide Fuel Cells

Cobalt-Free PSFNRu Nanocomposites Assembled In Situ as Bifunctional Electrodes for Direct Ammonia Symmetric Solid Oxide Fuel Cells

September 18, 2025

Study Finds Biochar Enhances Black Soil Health and Increases Crop Yields

September 18, 2025

4 Breakthroughs in Beer and Wine Science Uncovered

September 18, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Algal Carbon Catalysts Boost Esterification Efficiency

Introducing Frasky: The Innovative New Robot Revolutionizing Vineyard Management

Rising Cardiovascular Disease Risk in Mexico Persists Despite Advances in Cholesterol Management

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.