• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Skin plays significant role in spread of leishmaniasis

Bioengineer by Bioengineer
July 5, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the University of York have discovered that parasites responsible for leishmaniasis – a globally occurring neglected tropical disease spread by sand flies – are mainly acquired from the skin rather than a person's blood.

Visceral leishmaniasis is a parasitic infection that kills 20-40 thousand people each year across 56 countries, mainly in the developing world. There is no vaccine and drugs are prohibitively expensive or toxic.

Previously it was assumed that sand flies acquired the disease parasite directly from a host's blood, through biting an infected person before spreading the disease to uninfected people in subsequent bites.

However, the number of parasites found in blood has often been puzzlingly low, leading some to question whether there is another source of parasites for transmission.

Now, mathematicians, experimental biologists and immunologists have revealed a 'patchy landscape of parasites' found on carriers' skin that determines how many parasites are picked up by sand flies.

Using mathematical modelling, they showed that some areas of skin can contain particularly high numbers of the parasite, while other areas may not.

This means that whether a sand fly becomes infected or not depends on where they bite a person.

This breakthrough is significant as it suggests current methods of treating leishmaniasis are too simple, as disease detection and treatment often focuses on levels of the parasite in blood samples.

The research also stresses that more attention should be focused on developing treatments that affect parasites in the skin, if the cycle of transmission is to be interrupted.

Johannes Doehl, Post-Doctoral Research Associate in York's Centre for Immunology and Infection and lead author of the study, said: "Currently, to assess treatment success in visceral leishmaniasis, clinicians focus on monitoring parasite levels in a host's blood.

"However, we now have conclusive proof that measuring parasites in the skin, not just the blood, is critical when assessing possible treatments. Clinical studies and elimination campaigns need to take this into account, and in particular measure how treatments affect the patchy landscape of parasites in the skin."

Dr Jon Pitchford, Reader in York's Departments of Biology and Mathematics, said: "To effectively control leishmaniasis, we don't just need to cure the disease in patients, we must also understand and try and break the transmission cycle. This research is the first step towards improving the treatment process and demonstrates how the application of mathematics can help solve important problems in medicine."

###

Media Contact

Saskia Angenent
[email protected]
44-019-043-23918
@uniofyork

http://www.york.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Sequelae of Viral CNS Infections: Outcomes, Mechanisms, Gaps

November 16, 2025

Anorectal Malformation Surgery: Five-Year Outcomes in Eastern Africa

November 16, 2025

Creating a Patient Tool to Prevent Veteran Firearm Suicide

November 16, 2025

Do Gut and Immune Interactions Influence Depression?

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sequelae of Viral CNS Infections: Outcomes, Mechanisms, Gaps

Distinct Body Sizes: Analyzing Pig Skeletal Muscle Transcriptomes

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.