• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Size is key in predicting how calcifying organisms will respond to ocean acidification

Bioengineer by Bioengineer
July 26, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – New research suggests size is the main factor that predicts how calcifying organisms will respond to ocean acidification.

The findings, published today in Global Change Biology, shed key light on which information is most important for projecting the effects of ocean acidification, a byproduct of rising carbon dioxide levels in the atmosphere.

Previously, many different drivers had been proposed to predict how different species will respond to ocean acidification, including evolutionary relatedness, habitat, and morphology.

But a study of five species of coralline algae found that these factors play far less role in physiological performance in the face of sinking pH levels than the organism's size.

"Decades of research have shown that calcifying species are negatively affected by ocean acidification," said the study's corresponding author, Allison Barner, who did the research while completing her Ph.D. in integrative biology at Oregon State University. "But even closely related species can have different responses to acidification and not much was known about the drivers that shape this variation."

About 30 percent of the carbon dioxide in the air ends up in the sea, where it causes a reduction in carbonate ions – a key building block for a variety of calcifying organisms, including not only the algae in the study, but also animals like mussels, sea stars, oysters and corals.

Barner and colleagues in the OSU College of Science tested multiple hypotheses for predicting how the five species of turf-forming algae, native to the Pacific Northwest coast, would perform physiologically in acidified conditions.

In addition to running experiments that simulated future ocean acidification conditions, Barner and colleagues measured a suite of properties for each species, including its habitat distribution along the Oregon coastline and its size, surface area and shape.

"All of the species had declining calcification with short-term increases in acidification," said Barner, now a postdoctoral scholar at the University of California, Berkeley. "And the findings supported the hypothesis that organismal size is the best predictor of an individual's physiological performance under acidified conditions. Importantly, we can rule out the scenario that each species might have a different response to ocean acidification."

By understanding the factors that control species response, Barner says, scientists may be able to better predict how groups of organisms might respond to ocean acidification and other climate change factors, beyond one species at a time.

The species studied were Corallina officinalis, Corallina vancouveriensis, Calliarthron tuberculosum, Bossiella orbiginiana and Bossiella plumosa.

"Coralline algae are among the most vulnerable calcifying species to an acidifying ocean," Barner said. "The ecological consequences of coralline algae decline are likely to be high, as they play key roles in many marine ecosystems."

Previous experiments from the same researchers found that in Oregon, coralline algae act as a "nursery" for other species, providing habitat for a diverse assemblage of animals and seaweeds.

###

The U.S. Environmental Protection Agency, the National Science Foundation, the David and Lucille Packard Foundation, the OSU Hatfield Marine Science Center Marnie Markham Research Grant, the Kingfisher Foundation, the Wayne and Gladys Valley Foundation, and the OSU Integrative Biology Research Fund supported the most recent study.

Media Contact

Allison Barner
[email protected]
@oregonstatenews

http://oregonstate.edu/

http://bit.ly/2NEwZXQ

Related Journal Article

http://dx.doi.org/10.1111/gcb.14372

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Group Therapy Boosts Recovery in Elderly Depression

Evaluating Biosimilar Trastuzumab for Breast Cancer in Thailand

Decoding Phantom Limb Movements via Intraneural Signals

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.