• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Single mutation dramatically changes structure and function of bacteria’s transporter proteins

Bioengineer by Bioengineer
October 22, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study of E. coli bacteria may provide clues about drug resistance

IMAGE

Credit: Nathaniel Traaseth and Ampon Sae Her (CC BY 4.0)

Swapping a single amino acid in a simple bacterial protein changes its structure and function, revealing the effects of complex gene evolution, finds a new study published in the journal eLife. The study–conducted using E. coli bacteria–can help researchers to better understand the evolution of transporter proteins and their role in drug resistance.

“We were quite surprised by how minor mutations can influence the structure and function of transporter proteins,” said Nate Traaseth, associate professor of chemistry at New York University and the study’s senior author.

Cells are bound by a thin membrane layer that protects its interior from the outside environment. Within this layer are transporter proteins that control which substances are allowed in and out of the cell. These transporters actively move substances across the cell membrane by loading cargo on one side of the layer, then changing their structure to release it on the other side.

Membrane transporters are typically made up of multiple repeating units. In more complex transporters, the genetic sequence for each of these structural units is fused together into a single gene that codes for the protein.

It is thought that the repeated pattern evolved from smaller membrane protein genes that had duplicated and fused together. But are there evolutionary advantages to having more complex transporters being produced from a single, fused gene?

To investigate this, Traaseth and colleagues Maureen Leninger and Ampon (Callie) Sae Her in NYU’s Department of Chemistry examined a simple transporter found in E. coli bacteria, which is plentiful in human and animal intestines. However, some strains of E. coli can cause serious illness and are increasingly resistant to antibiotics, which occurs when they pump out toxic compounds using transporters in their membrane. The E. coli transporter, called EmrE, contains two identical protein subunits that work together to move toxic molecules across the membrane and eliminate them from the cell.

Experiments revealed that changing a single amino acid–the building blocks that make up proteins–in one of the two protein subunits to make them slightly different from each other dramatically modified the transporter’s structure and function. The subtle amino acid swap disrupted the balance of inward- and outward-facing proteins.

Importantly, changing the single amino acid altered the transporter’s ability to remove toxic chemicals from E. coli and reduced the bacteria’s resistance to drugs–which may have future implications for drug development and combating antibiotic resistance.

“While the clinical application of these findings is a few steps away, understanding the evolution of drug transporters gives us new insight into how Mother Nature may harness mutations to provide drug resistance,” said Traaseth.

The researchers note that the effects of a minor change to one of the identical halves of the EmrE transporter demonstrates how sensitive membrane transporters are to mutations.

“This observation could also help explain why evolution favored more complex transporters comprised of fused genes in which single amino acid changes can alter how the transporter operates,” added Traaseth.

###

The research was supported by the National Institutes of Health (R01 AI108889 and S10OD016343) and National Science Foundation (MCB 1506420).

Media Contact
Rachel Harrison
[email protected]
212-998-6797

Original Source

https://www.nyu.edu/about/news-publications/news/2019/october/single-mutation-dramatically-changes-structure-and-function-of-b.html

Related Journal Article

http://dx.doi.org/10.7554/eLife.48909

Tags: BacteriologyBiologyChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

November 7, 2025
blank

OSU Develops Revolutionary New Material Advancing Medical Imaging Technology

November 7, 2025

Heat-Resistant Microbes Uncover Molecular Secrets Behind Nature’s Ultimate Recycling System

November 7, 2025

Innovative MOF Membrane Electrolyzer Converts Air and Flue Gas CO2 into Pure Formic Acid, Advancing Carbon Neutrality

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Social Anxiety in Autism: A Multi-Method Approach

Impact of Patient Variability on Vascular Tissue Engineering

Texas Transitional Dialysis Program Significantly Reduces Emergency Dialysis Usage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.