• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Single-cell RNA profiling

Bioengineer by Bioengineer
July 31, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The human body is made up of on the order of 13 billion cells – and each of them has a distinct molecular profile. Even cells in the same tissue can differ, often subtly, from one another, and their activities can vary over time. This is why single-cell analyses provide such a powerful tool for the characterization of cellular heterogeneities and the complex mechanisms that account for them. "Single-cell technologies are already revolutionizing biology", as LMU molecular biologist Professor Wolfgang Enard puts it. Enard and his group have now improved an already highly sensitive method in this field and present their findings in Nature Communications.

Single-cell RNA sequencing makes it possible to obtain a snapshot of the functional state of any given cell – a molecular fingerprint, as it were. Essentially, the technique determines the composition of the messenger RNA (mRNA) population present in a cell. mRNAs are copies ('transcripts') of defined segments of the genetic information encoded in the cell's DNA, which serve as blueprints for the synthesis by specialized organelles called ribosomes of the specific proteins required in each cell type. Thus the inventory of the mRNAs present in a cell amounts to a list of the proteins made by that cell, which essentially reveals its functional state. By identifying the genes that were active at the time of analysis, it can tell us how these genes are regulated, and what happens when this process is disrupted by infection or other disease states.

The sequencing of all mRNAs from a single cell is a demanding task, and several different procedures have been designed and implemented. All begin with the "reverse transcription" of the isolated mRNAs into DNA by enzymes known as reverse transcriptases. The DNA copies are then replicated ('amplified') and subjected to sequence analysis. Enard and his colleagues have now systematically modified one of these methods, SCRB-seq (the acronym stands for 'single-cell RNA barcoding'), and significantly increased its sensitivity. "The trick is to supplement the reverse transcriptase reaction with an agent that increases the density of the medium. This induces molecular crowding, and speeds up the reaction, so that more RNA molecules are transcribed into DNA strands," Enard explains. A second modification reduces the incidence of preferential amplification of certain DNAs, which would otherwise distort the representation of the different RNAs present in the original cell. "Together, these modifications make our method, mcSCRB-seq, one of the most effective and economical RNA-seq procedures currently available," Enard says.

Single-cell RNA sequencing methods are also indispensable for the realization of the Human Cell Atlas. Enard is directly involved in this ambitious international project, which is comparable in scale to the Human Genome Project. Its goal is to assemble a catalog of all human cell types, from embryo to adult, based on their specific patterns of gene activity. The project promises to vastly expand our knowledge of human biology and the origins of human diseases.

###

Media Contact

Dr. Kathrin Bilgeri
[email protected]
0049-892-180-3423

http://www.uni-muenchen.de

https://www.en.uni-muenchen.de/news/newsarchiv/2017/enard_methoden.html

Share12Tweet8Share2ShareShareShare2

Related Posts

Mount Sinai Studies Reveal Key Molecular Differences Between Living and Postmortem Brain Tissue

Mount Sinai Studies Reveal Key Molecular Differences Between Living and Postmortem Brain Tissue

October 15, 2025
blank

Eight Bat Species Frequent Pig Farms in Northern Italy for Commuting and Foraging

October 15, 2025

Unraveling Takotsubo Syndrome: Psychosocial and Clinical Insights

October 15, 2025

Ancient Lead Exposure Influenced the Evolution of the Human Brain

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1247 shares
    Share 498 Tweet 311
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Low-Dose Steroids Show Promise in Treating Severe Kidney Inflammation

Assessing Patient Letters’ Effect on Health Literacy

Mount Sinai Studies Reveal Key Molecular Differences Between Living and Postmortem Brain Tissue

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.