• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Single-atom alloy: Superb cocatalyst for photocatalysis

Bioengineer by Bioengineer
October 28, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Photocatalysis, converting solar energy into chemical energy, has been recognized to be a very promising solution to the current energy and environmental issues. The performance of the photocatalytic system depends largely on the surface charge state of active sites (usually, i.e., co-catalysts), as the Schottky junction between photosensitizer and co-catalyst facilitates charge transfer between them and finally to reactant molecules, promoting the adsorption and activation of the latter.

In contrast to the existed reports centered on co-catalysts, such as the development of non-noble metal, particle size and distribution control, exposed crystal facets and their interface contact with photosensitizers, the regulation on surface charge state of co-catalysts by changing their microstructures provides vast opportunities for boosting photocatalysis, yet remains extremely rare.

In this work, Dr. Jiang’s research group from the University of Science and Technology of China has achieved the goal of optimizing Pt surface charge state via the control of bimetallic Pd@Pt microstructure and Pt coordination environment.

The bimetallic core-shell-structured Pd@Pt NPs have been in situ fabricated and stabilized by a photosensitive and representative metal-organic framework (MOF), UiO-66-NH2. The microstructure of the Pd10@Ptx co-catalyst can be precisely controlled from core-shell to single-atom alloy (SAA), during which Pt coordination environment changes, by precisely and simply tuning the Pt content.

Given the different working functions of Pd and Pt, the charge between Pd and Pt is redistributed, accompanied by Pt coordination environment change, thus achieving the surface charge state regulation of Pt sites.

As a result, all Pd@Pt/MOF present excellent photocatalytic hydrogen production activity due to the electron-rich Pt sites benefited from charge redistribution effect. Moreover, the optimized Pd10@Pt1/MOF composite with SAA co-catalyst, which features the most electron-rich Pt, exhibits an exceptionally high photocatalytic hydrogen production activity, far surpassing its corresponding counterparts (see in image).

This is the first report on SAA co-catalyst toward photocatalysis. It provides the design strategy and synthetic protocol for the fabrication of SAA catalysts and opens up a new avenue to SAA-based photocatalysis. In addition, as an alternative to the classical Schottky junction strategy, this work introduces a novel approach to charge state optimization by regulating the co-catalyst microstructure (especially the coordination environment control), toward enhanced photocatalysis.

###

See the article:

Yating Pan, Yunyang Qian, Xusheng Zheng, Sheng-Qi Chu, Yijun Yang, Chunmei Ding, Xi Wang, Shu-Hong Yu, Hai-Long Jiang

Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis

Natl Sci Rev, nwaa224

https://doi.org/10.1093/nsr/nwaa224

Media Contact
Hai-Long Jiang
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa224

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Incorporate Waveguide Physics into Metasurfaces to Unlock Advanced Light Manipulation

October 6, 2025
blank

Scientists Develop “Knob” to Control Topological Spin Textures in Materials

October 6, 2025

Scientists develop red fluorescent dyes to enhance clarity in biomedical imaging

October 6, 2025

Breakthrough: Ultrafast Squeezed Light Enables First Real-Time Measurement of Quantum Uncertainty

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    73 shares
    Share 29 Tweet 18
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Score Predicts Therapy Discontinuation in Psoriasis

Arbeitsbelastung und Gesundheit von Pflegekräften in Pandemie

Psychiatry, Primary Care, and OB/GYN Subspecialties Experience Highest Physician Attrition Rates

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.