• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Simulations document self-assembly of proteins and DNA

Bioengineer by Bioengineer
March 28, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

What makes particles self-assemble into complex biological structures? Often, this phenomenon is due to the competition between forces of attraction and repulsion, produced by electric charges in various sections of the particles. In nature, these phenomena often occur in particles that are suspended in a medium–referred to as colloidal particles–such as proteins, DNA and RNA. To facilitate self-assembly, it is possible to "decorate" various sites on the surface of such particles with different charges, called patches. In a new study published in EPJE, physicists have developed an algorithm to simulate the molecular dynamics of these patchy particles. The findings published by Silvano Ferrari and colleagues from the TU Vienna and the Centre for Computational Materials Science (CMS), Austria, will improve our understanding of what makes self-assembly in biological systems possible.

In this study, the authors model charged patchy particles, which are made up of a rigid body with only two charged patches, located at opposite poles. They then develop the equations governing the dynamics of an ensemble of such colloidal patchy particles.

Based on an existing approach originally developed for molecular particles, their simulation includes additional constraints to guarantee that the electrical charge "decorations" are preserved over time. In this regard, they develop equations for describing the particles' motion; the solutions to these equations describe the trajectories of these colloidal particles. Such molecular dynamics simulations lend themselves to being run in parallel on a huge number of particles.

With these findings, the authors complement the lessons learned from experimental observations of similar particles recently synthesised in the lab. Recent experiments have demonstrated that colloidal particles decorated at two interaction sites display a remarkable propensity for self-organising into highly unusual structures that remain stable over a broad temperature range.

###

Reference: Molecular dynamics simulations of inverse patchy colloids. S. Ferrari, G. Kahl, and E. Bianchi (2018), Eur. Phys. J. E 41: 43, DOI 10.1140/epje/i2018-11647-2

Media Contact

Sabine Lehr
[email protected]
49-622-148-78336
@SpringerNature

http://www.springer.com

https://www.springer.com/gp/about-springer/media/research-news/all-english-research-news/simulations-document-self-assembly-of-proteins-and-dna/15573912

Related Journal Article

http://dx.doi.org/10.1140/epje/i2018-11647-2

Share12Tweet7Share2ShareShareShare1

Related Posts

Tardigrades Reveal Unique Dicer Gene Family Expansions

Tardigrades Reveal Unique Dicer Gene Family Expansions

October 8, 2025
blank

Linkage: Connect DNA Regulatory Peaks to Genes

October 7, 2025

Edo Cattle Market Study: High Tick Diversity Observed

October 7, 2025

Brain-on-a-Chip Technology Uncovers Mechanisms of Brain Damage in Sepsis and Neurodegenerative Diseases

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1045 shares
    Share 418 Tweet 261
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut Microbiota Alterations Determine Susceptibility to AIG-Associated Neuroendocrine Tumors

Circular RNAs in Mammalian Follicle Development: Insights

Surgical Menopause May Prompt Early Workforce Exit in Women, But Hormone Therapy Shows Promise

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.