• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Simulating the shear destruction of red blood cells

Bioengineer by Bioengineer
November 1, 2022
in Biology
Reading Time: 3 mins read
0
A schematic diagram of shear flow.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, Nov. 1, 2022 – Many medical devices for treating heart failure generate nonphysiological shear flow. This can trigger the destruction of red blood cells after implantation of ventricular assist devices (VADs), artificial heart valves, vascular stents, or interventional thrombectomy devices.

A schematic diagram of shear flow.

Credit: Zhike Xu, Chenyang Wang, Sen Xue, Feng He, Pengfei Hao, and Xiwen Zhang

WASHINGTON, Nov. 1, 2022 – Many medical devices for treating heart failure generate nonphysiological shear flow. This can trigger the destruction of red blood cells after implantation of ventricular assist devices (VADs), artificial heart valves, vascular stents, or interventional thrombectomy devices.

The destruction of red blood cells, or mechanical hemolysis, is an inevitable complication of interventional devices, so scientists want to gain a better understanding of the phenomenon.

In Physics of Fluids, from AIP Publishing, researchers from Tsinghua University developed a red blood cell destruction model based on simulations of dissipative particle dynamics within a high shear flow. They used the results to make recommendations for improvements of VADs.

“After interventional medical devices are implanted inside the human body, the nearby flow field generates a shear flow with a very high shear rate,” said co-author Xiwen Zhang. “The velocity change rate of the fluid will deform the red blood cell membrane. Eventually, deformation of the membrane exceeds the ultimate strain, and the membrane is disrupted by shear flow.”

The team discovered that acceleration during shearing is a major factor in red blood cell destruction, beyond exposure time and shear stress. They recommend adding a flow buffer structure to the structural design of VADs to reduce part of the hemolysis caused by shear acceleration.

For hemolysis-related research, many researchers focus on macroscale experiments to obtain a series of empirical fitting formulas.

“But our team is exploring the shear destruction process of red blood cells in more detail at the red blood cell scale by using dissipative particle dynamics,” said Zhang.

“We hope our study can serve as a bridge between macroscopic hemolysis experiments and microscopic red blood cell simulations (molecular dynamics simulations),” said Zhang. “In future work, we will continue constructing shear failure models of multiple red blood cells and perform shear failure simulations based on whole blood to be able to compare them with macroscopic hemolysis experiments.”

The researchers are currently developing a new index to predict the hemolysis of VADs more accurately and help optimize the shape of VADs, which should improve hydraulic performance and reduce hemolysis.

They plan to better represent the diffusion process of hemoglobin after shear damage by adding a transport dissipation particle dynamics model based on this work.

###

The article “The erythrocyte destruction mechanism in non-physiological shear mechanical hemolysis” is authored by Zhike Xu, Chenyang Wang, Sen Xue, Feng He, Pengfei Hao, and Xiwen Zhang. The article will appear in Physics of Fluids on Nov. 1, 2022 (DOI: 10.1063/5.0112967). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0112967.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###



Journal

Physics of Fluids

DOI

10.1063/5.0112967

Article Title

The erythrocyte destruction mechanism in non-physiological shear mechanical hemolysis

Article Publication Date

1-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025
When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025

Watch and Listen: Underwater Acrobatics of the World’s Smallest Marine Dolphin Featured in Science Magazine

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Biochar Discovery Promises Cleaner, Safer Farmland Soils

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

Innovative CuO/SnO₂ Nanocomposites Enhance Photocatalysis and Supercapacitors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.