• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

‘Simple, but powerful’ model reveals mechanisms behind…

Bioengineer.org by Bioengineer.org
January 20, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The Scripps Research Institute

JUPITER, Fla. – Dec. 18, 2017 – All things must come to an end. This is particularly true for neurons, especially the extensions called axons that transmit electrochemical signals to other nerve cells. Without controlled termination of individual neuron growth, the efficient and accurate construction of a nervous system is in serious jeopardy.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have now uncovered new insights into the regulatory network behind that termination. The study, led by TSRI Associate Professor Brock Grill, PhD, was recently published online ahead of print in the journal Development.

The scientists focused on axons, long cellular structures that project outward from the neuron body. When nerve cells fire, it's the axon that transmits the electrochemical signal to other neurons. Over the course of their development, axons extend, change their growth in response to cellular guidance cues and form synapses.

At the heart of this process is a specialized structure on the end of each axon called a growth cone. Successful development depends on the growth cone stopping at the correct destination and when the axon is the correct length, a process known as axon termination.

Using the nematode worm C. elegans as a model, Grill and his colleagues found for the first time that growth cone collapse prior to axon termination is protracted as the growth cone transitions from a dynamic to a static state.

"We know very little about the process of how axons actually stop growing in a living animal," Grill says. "What we found in our simple, but powerful model is that a signaling hub protein called RPM-1 is required to regulate the collapse of growth cones during axon termination."

It's the protracted nature of the process, Grill says, that is likely to make the transition-and the termination-permanent.

These findings provide new details on how growth cone collapse is regulated during axon termination in vivo. The study also shows that RPM-1 signaling destabilizes nerve cell microtubules-large molecules that provide critical cell structure-to facilitate growth cone collapse and axon termination.

When the scientists looked at the relationship between RPM-1 and other regulators of microtubule stability, they were surprised by the results.

They found that that while RPM-1 signaling destabilizes axon microtubules, the microtubule stabilizer Tau potentially inhibits RPM -1, something that was previously unknown. "People have very little knowledge about how TAU works under normal physiological conditions," says TSRI Research Associate Melissa Borgen, PhD, first author of the study.

"Our results suggest that Tau inhibition of RPM-1 is necessary for proper axon development, and offers the first evidence that RPM-1 can be regulated in vivo in neurons."

The research has implications for the development of neurological disorders as well. In mouse models, RPM-1 is an active force in axon degeneration and TAU has been linked to neurological disorders, including Alzheimer's disease and frontal temporal dementia.

"You wouldn't necessarily have thought Tau and RPM-1 would function this way," Grill says. "That's the power of genetics. Although we assessed the genetic relationship between Tau and RPM-1 in axon development, our results could have important implications for neurodegeneration."

###

In addition to Grill and Borgen, the other author of the study, "RPM-1 Regulates Axon Termination by Affecting Growth Cone Collapse and Microtubule Stability," is Dandan Wang, PhD, of TSRI.

The study was supported by the National Institutes of Health (grant R01 NS072129) and the National Science Foundation (grant IOS-1121095).

Media Contact

Stacey Singer DeLoye
[email protected]
561-228-2551
@scrippsresearch

http://www.scripps.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Chronic Nicotine’s Impact on Adolescent Stress and Brain Chemistry

October 27, 2025
blank

Revolutionary Software Tool MARTi Accelerates Detection and Response to Microbial Threats

October 27, 2025

Lifestyle Activities Linked to Greater Life Satisfaction

October 27, 2025

Unraveling the Mechanism Behind Psychedelics

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chronic Nicotine’s Impact on Adolescent Stress and Brain Chemistry

Revolutionary Software Tool MARTi Accelerates Detection and Response to Microbial Threats

Lifestyle Activities Linked to Greater Life Satisfaction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.