• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Significant developments in gamut mapping for the film industry

Bioengineer by Bioengineer
December 2, 2019
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Presented in an article published on Nov. 14 in the journal IEEE Transactions on Pattern Analysis and Machine Intelligence

IMAGE

Credit: UPF


Particularly in the film industry, the rapid development of display technologies has created an urgent need to develop fast, automatic gamut mapping algorithms. An article published on 14 November in the advanced online edition of the IEEE Transactions on Pattern Analysis and Machine Intelligence presents significant progress in this area.

A screen’s colour range is the set of colours it can reproduce. Wider screen formats can present more vivid and intense colours. The mapping of gamut or range is the process of adapting colours to the range of the screen to fully exploit the colour palette of the display device on which the content is shown, while preserving the artistic intent of the creator of the original content.

The goal of gamut mapping for film is to develop algorithms (gamut mapping algorithms, GMA) that reproduce the original content of the film insofar as possible respecting the artist’s vision, because this is an important feature that all GMA should have in order to be adopted by the film industry. “Therefore, for this study we performed psychophysical experiments to compare the performance of the proposed GMA with other methods in film conditions using a digital film projector (Barco-DP-1200 [75]) and a large projection screen”, the authors point out in their article.

Software that mimics the neural processes of the human visual system

“In this paper, we propose a new framework based on biological visual models. Our method both reduces and extends the gamut, is of low computational complexity, produces results that are free from artefacts, and outperforms the most advanced methods according to psychophysical tests”, explain the authors Syed Waqas Zamir, researcher at the Inception Institute of Artificial Intelligence, Abu Dhabi (UAE) and PhD from UPF (2017), and Javier Vázquez-Corral and Marcelo Bertalmío, researchers at the Department of Information and Communication Technologies (DTIC) at UPF..

In this paper, the authors present the details of a new method based on neural models that come from scientific knowledge about human vision. As Bertalmío, coordinator of the Image Processing for Enhanced Cinematography (IP4EC) research group explains, “instead of working on the hardware, improving lenses and sensors, we resort to the latest knowledge of neuroscience and the existing models of visual perception to develop software methods that mimic the neural processes of the visual system applying these methods to the images harnessed by a regular camera”.

“Our experiments also highlight the limitations of existing objective metrics to the problem of gamut mapping and provides solutions”, they add.

###

Media Contact
UPF
[email protected]

Original Source

https://www.upf.edu/web/e-noticies/home/-/asset_publisher/wEpPxsVRD6Vt/content/id/230604163/maximized#.XeTM1OhKjcs

Related Journal Article

http://dx.doi.org/10.1109/TPAMI.2019.2938499

Tags: Computer ScienceMultimedia/Networking/Interface DesignTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Proteome Atlas Unveils Diabetic Retinopathy Risks

October 31, 2025
Interconnections of Conflict, Climate Change, and Public Health: A Scientific Perspective

Interconnections of Conflict, Climate Change, and Public Health: A Scientific Perspective

October 31, 2025

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025

Advancing Antihypertensive Analysis Through Sustainable Signal Processing

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Proteome Atlas Unveils Diabetic Retinopathy Risks

Interconnections of Conflict, Climate Change, and Public Health: A Scientific Perspective

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.