• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

SibFU scientists simulated the intracellular environment of a luminescent bacteria cell

Bioengineer by Bioengineer
October 26, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of Oleg Sutormin.

A team from the Institute of Fundamental Biology and Biotechnology of SFU used glycerol and sucrose to simulate the intracellular environment of luminescent bacteria and carried out a number of enzymatic reactions in it. The work will help develop fragments of metabolic chains with different lengths and study fermentative reactions in the conditions close to intracellular. The article of the scientists was published in the Molecular Catalysis journal.

Hundreds of reactions involving enzymes constantly take place in real cells. To study them in more detail, scientists from all over the world try to create comprehensive experimental models of the intracellular environment. One interesting feature of such artificial environment-models is the possibility to adjust their parameters to understand how a certain enzymatic reaction would react to that and how different the nature of enzyme reactions is in a real cell and in tube conditions.

In order to understand how the viscosity of the reaction mixture affects the rate of enzymatic processes, a team from the Institute of Fundamental Biology and Biotechnology of SFU simulated the intracellular environment using two organic solvents – glycerol and sucrose. To test the effect of viscosity of reaction mixture, the scientists placed a fragment of a bioluminescent metabolic chain into such environment (bioluminescence is the ability of living organisms to emit light, observed, for example, in fireflies or marine bacteria).

The work of the scientists consisted of three stages. On the first stage the biophysicists developed several artificial model systems made of glycerol and sucrose with different concentrations of components but the same viscosity levels of reaction medium. On the second stage they found out how the viscosity of the reaction mixture affected the speed of a enzymatic reaction in the coupled system of three enzymes: LDH, NAD(P)H:FMN-oxidoreductase, and luciferase. On the third stage the researchers evaluated the thermal stability of the triple-enzyme system at the range of temperatures from 15 to 80°?.

As a result of the study the scientists concluded that sucrose limited the mobility of the enzymes more efficiently than glycerol. Mobility limitation may lead to changes in the reaction rate or even mechanism. Moreover, the study showed that the increasing of thermal stability of enzymes in the presence of viscous reaction mixture environments while increasing temperature should be speculated more detailed by other researchers. Another result of the study was that the approach of constructing the cellular multi-enzyme metabolic chains inside the luminous bacteria cell was proposed.

"Due to the huge number of enzymes reactions inside a real cell, for the process of metabolism to go on quickly and continuously within it, enzymes should have high cooperativity (i.e. be able to bind with different substances (substrates) depending on their location). Therefore, the more changing of the thermal stability of enzymes in the presence of viscogens, the better the cooperation of studied enzyme systems inside the real-cell conditions, and the greater the possibility that an artificial fragment of a metabolic chain would be natural for a bacterial cell. It is extremely important to study the influence of viscous organic solvents on the rate and thermal stability of enzymatic reactions. The uniqueness of our study is that we use natural compounds – glycerol and sucrose that are actually found in the real cell, in contrast to crowding agents that are used in similar studies by other researchers," says Oleg Sutormin, a co-author of the study, and junior research associate of the Laboratory of Bioluminescent Biotechnologies of SFU.

###

Media Contact

Yaroslava Zhigalova
[email protected]
7-391-291-2733
@SibFUniversity

http://www.sfu-kras.ru/en

Related Journal Article

http://dx.doi.org/10.1016/j.mcat.2018.08.012

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Risk Assessment of PAHs in Korean Sesame Oil

November 3, 2025
Sex Differences Unveiled in Hamster Hypertension Study

Sex Differences Unveiled in Hamster Hypertension Study

November 3, 2025

AI Misuse in Stem Cell Research: A Comparative Study

November 3, 2025

Modular High-Throughput Tools Boost Chlamydomonas Chloroplast Research

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Matter at the Nanoscale: The Future of Field-Based Printing

Transforming Healthcare: Trauma-Informed Change in South Texas

Innovative Lightweight Multi-Wavelength Network Enables Efficient, High-Fidelity Full-Color 3D Holographic Displays

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.