• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Shortcut method in drug development

Bioengineer by Bioengineer
July 12, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the latest issue of the journal Proceedings of the National Academy of Sciences (PNAS), a research group at Uppsala University presents a new, small-scale method that may become a smart shortcut for determining the "bioavailability" of a pharmaceutical drug within cells.

"Finding out how a therapeutic drug affects the body means having to consider many different factors that can influence the cells' internal environment. Our method may be a way of substantially facilitating this stage."

The speaker, Uppsala University's Professor Per Artursson, bears primary responsibility for the joint study under way with colleagues at the Chemical Biology platform in SciLifeLab (created jointly by Uppsala and Stockholm Universities, Karolinska Institute and KTH Royal Institute of Technology) and GlaxoSmithKline in Stevenage, UK.

The majority of promising new drug candidates are effective only within the body's cells, but quick general methods of determining intracellular drug quantities are lacking. A team of researchers, headed by the Drug Delivery Group at Uppsala University, may now be on the track of a solution through a new, small-scale and fast method of determining a drug's bioavailability (the fraction available to work in biological processes) inside cultured cells. By measuring the unbound quantity of the drug in the cells, the method takes into account how the drug partly "disappears" when it binds to various cell components where it cannot exert its intended effect. This "disappearing" proportion of the drug varies from one molecule to another and has hitherto been hard to predict, but can now be easily determined with the researchers' small-scale method.

The research group has also demonstrated that, measured with the new method, bioavailability can be used to predict the effects of the drug molecules in various more advanced cell models for specific therapeutic areas, such as cancer, inflammation and dementia disorders.

"It takes time to develop models for specific therapeutic areas, so our method may be especially useful in early stages of drug development. Major pharmaceutical drug companies have already shown great interest and the method is now being offered on the SciLifeLab Drug Discovery and Development platform," Artursson says.

The scientists are currently investigating whether the method can predict effects of drugs in the body as well. This is more complicated than a cell culture. Since taking blood samples is simple while sampling tissue is considerably more difficult, bioavailability is often predicted on the basis of drug concentrations in the blood – a fairly blunt instrument.

The proportion of a drug entering the target cell may be either higher or lower than in the blood. The drug may, for example, bind to the cell's fat molecules, break down or be transported out of the cell. These mechanisms reduce the available fraction of the drug inside the cell, i.e. its intracellular bioavailability. Retrospective correction factors must therefore often be introduced to allow for these mechanisms in the use of "pharmacokinetic models" to study a drug's route of administration into the body.

"Our preliminary studies show that replacing the correction factors with a simple determination of local bioavailability in the cells seems to be possible. But more experiments are required before we know how applicable our principle is at tissue and organism level. Clearly, intracellular bioavailability is on the way to becoming an important early instrument in pharmaceutical drug research," Artursson says.

###

Mateus et al; Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery, PNAS (Proceedings of the National Academy of Sciences of the United States of America), tracking number 2017-01848R, will be published online during this week, 10-14 July 2017.

For more information:

Per Artursson, Professor at the Department of Pharmacy, Uppsala University and SciLifeLab, [email protected], +46-18-471 44 71, +46-70-425 08 88

Pär Matsson, Researcher at the Department of Pharmacy, Uppsala University and SciLifeLab, [email protected], +46-18-471 4630, +46-70-22 99 836

Media Contact

Per Artursson
[email protected]
46-704-250-888
@UU_University

http://www.uu.se

http://www.uu.se/en/media/press-releases/press-release/?id=3934&area=3,8&typ=pm&lang=en

Related Journal Article

http://dx.doi.org/10.1073/pnas.1701848114

Share12Tweet8Share2ShareShareShare2

Related Posts

Leptin-Sensing Brain Circuit Reduces Anxiety to Support Essential Behaviors: Eating, Exploring, and Resting

Leptin-Sensing Brain Circuit Reduces Anxiety to Support Essential Behaviors: Eating, Exploring, and Resting

October 20, 2025
blank

Prenatal BPA Alters YY1 and Affects Offspring Brain

October 20, 2025

GABA Protects Colorectal Cancer Cells from Cortisol Damage

October 20, 2025

Visual Experience’s Impact on Haptic Spatial Perception

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    298 shares
    Share 119 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pharmacist-Led Medication Review for Sepsis Patients

Perinatal Gut Microbiome Links to Infant Respiratory Infections

Hormone Therapy Reshapes Body Proteins to Align with Gender Identity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.