• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Shockwave caused by Tonga underwater eruption may help scientists predict future tsunami

Bioengineer by Bioengineer
July 14, 2022
in Chemistry
Reading Time: 3 mins read
0
Underwater Eruption
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using data from the eruption of the underwater volcano near Tonga in 2022, a research group at Nagoya University in Japan has used disturbances in the earth’s upper atmosphere to track the airwaves that cause tsunami. Their findings may lead to speedier predictions of these giant waves. 

Underwater Eruption

Credit: EyePress News/Shutterstock

Using data from the eruption of the underwater volcano near Tonga in 2022, a research group at Nagoya University in Japan has used disturbances in the earth’s upper atmosphere to track the airwaves that cause tsunami. Their findings may lead to speedier predictions of these giant waves. 

Every minute is crucial when warning people caught in the path of a tsunami. After the 2004 Indian Ocean earthquake, a tsunami in Indonesia reached Sri Lanka in less than two hours. Eight hours later, it arrived on the coast of Kenya. If there had been a way to notify people about the dangers of a tsunami in those faraway areas, it may have been possible to save at least some of the 230,000 victims. 

A research group led by Assistant Professor Atsuki Shinbori, Associate Professor Yuichi Otsuka, and Associate Professor Nozomu Nishitani of the Institute for Space-Earth Environmental Research (ISEE), Nagoya University, in collaboration with the National Institute of Information and Communications Technology and the University of Electro-Communications, believes that it may be possible to predict tsunami faster by tracking the atmospheric disturbances caused by the airwaves they create. Their findings were reported in Earth, Planets and Space. 

When a tsunami occurs, it deforms the lower atmosphere and generates oscillations of sound and gravity waves, causing disturbances of the electrons in the upper atmosphere, also called the ionosphere. Radio waves, such as those used in GPS and satellite broadcasting/communications, also pass through this part of the atmosphere. As a result, the disturbances caused by a natural disaster produce errors in the positional information supplied by GPS satellites.  

Shinbori and his group used satellites and radar to examine these errors following the 2022 undersea volcanic eruption off the coast of Tonga in the South Pacific. They found that the eruption of the underwater volcano caused waves of air pressure that spread as far as Australia and Japan. These waves oscillated the lower part of the ionosphere. This generated an electric field that was then transmitted at high speed to the upper ionosphere. To their surprise, the researchers detected the electron changes much earlier than the air pressure waves that caused the tsunami.  

The structures of the disturbance over Japan and Australia, interestingly, also mirrored each other. Despite being in different hemispheres, they occurred almost simultaneously because they disturbed the electrons in the magnetic field lines, the magnetic lines that radiate from the south to the north magnetic pole. The team calculated the speed of these disturbances and found the electromagnetic wave along the magnetic field lines travelled at 1000 kilometers (621.4 miles) per second. This was far faster than the air pressure wave, which traveled at the speed of sound (a comparatively slower 315 meters (0.2 miles) per second).  

“We captured the signal of the ionospheric disturbance caused by the air pressure wave about three hours before the pressure wave originating from the volcanic eruption believed to have triggered the tsunami in Japan,” Shinbori explains. “In short, the significance of these results can be divided into two aspects: the scientific aspect of a coupled system, and the disaster prevention aspect of preparedness for severe events such as tsunamis.”  

Future applications of the technique are already being considered. “Statistical analysis of ionospheric disturbances during volcanic eruptions and seismic events may make it possible to estimate tsunami wave heights and sizes from ionospheric disturbance signals in the future,” Shinbori says. “Ionospheric disturbances may be a new step forward in tsunami alerts.” 

This research was supported by a Grant-in-Aid for Specially Promoted Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS), which began in FY2016, “Study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations (PWING Project)”. 



Journal

Earth Planets and Space

Article Publication Date

14-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1281 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    192 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glymphatic Flow Dysfunction Linked to Parkinson’s Disease

Night Shift Impact on Nurses’ Heart Rate Variability

Assessing Quality of Life After Neoadjuvant Therapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.