• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 19, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Shiftless: Novel host antiviral factor that inhibits programmed -1 ribosomal frameshifting

Bioengineer by Bioengineer
January 28, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The genome sizes of viruses are usually relatively small. To increase information content of the genome, many viruses employ a translation recoding mechanism dubbed programmed ribosomal frameshifting.

Translating ribosomes pause at a -1PRF signal. While most ribosomes move on in the original reading frame, a small proportion slip back one nucleotide to translate in a new frame, resulting in two protein products differing at the C-termini. HIV-1 uses programmed -1 ribosomal frameshifting (-1PRF) to produce Gag and Gag-Pol, which are both required for viral replication.

The -1PRF mechanism exists in all domains of life. In eukaryotes, -1PRF may also result in a premature stop codon, which could lead to the degradation of mRNA. The -1PRF mechanism plays an important role in the post-transcriptional regulation of gene expression. However, how -1PRF is regulated by host factors is largely unknown. In a study published in Cell, GAO Guangxia’s group at the Institute of Biophysics of the Chinese Academy of Sciences reported a novel host antiviral factor named Shiftless that inhibits -1PRF.

GAO’s lab has been focusing on the molecular mechanism underlying virus-host interactions. To identify host factors that inhibit -1PRF, they demonstrated that type I interferon can inhibit the expression of Gag-Pol, the -1PRF product of HIV-1. By screening interferon-stimulated genes (ISG) for their capacity to inhibit Gag-Pol expression, they identified Shiftless (originally named C19orf66).

Shiftless displayed considerable inhibitory activity against all the tested -1PRF from both viruses and cellular genes, indicating that it is a broad-spectrum -1PRF inhibitor.

To explore the mechanism of Shiftless, researchers analyzed the interactions of Shiftless with the -1PRF RNA and translating ribosomes, two key players in the process of -1PRF. Shiftless interacted with both. Based on this result, they reasoned that Shiftless binding to the translating ribosomes and RNA simultaneously might render the ribosome stuck in a non-productive state, stalling on the RNA. The stalled ribosome should be rescued by the quality control mechanism, leading to premature translation termination.

Using a sensitive reporter system, they detected the premature translation termination product, proving their hypothesis. They demonstrated that the premature translation termination was executed by the host translation release factors eRF1 and eRF3.

Moreover, researchers proposed a working model for Shiftless to inhibit -1PRF. Shiftless interacts with the -1PRF signal RNA and the translating ribosome, and thereby causes ribosome stalling at the -1PRF site. Furthermore, Shiftless recruits the translation release factors eRF1-eRF3 to rescue the stalled ribosome, resulting in the production of premature translation termination (PMT) product.

Since -1PRF is a widely used mechanism, these results have far reaching implications that may impact many different fields.

###

Media Contact
GAO Guangxia
[email protected]
http://dx.doi.org/10.1016/j.cell.2018.12.030

Tags: BiologyVirology
Share12Tweet7Share2ShareShareShare1

Related Posts

Zebrafish Weigh Familiarity and Group Size in Choices

Zebrafish Weigh Familiarity and Group Size in Choices

January 19, 2026
blank

Calcium Channel Modulation: Matricaria Chamomilla’s Cardiovascular Impact

January 19, 2026

Exploring XTH Gene Family’s Role in Cowpea Salt Stress

January 19, 2026

Detecting Aflatoxins and Ochratoxin A in Feed

January 19, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Phagocytosis Checkpoints: A New Cancer Therapy

Rewrite ChatGPT-4 versus emergency physicians for walk-in ED patients: history, differential diagnosis, testing, and disposition—a prospective feasibility study as a headline for a science magazine post, using no more than 8 words

Chronic Stress Fuels Liver Cancer by Disrupting Immunity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.