• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Shape-shifting molecular robots respond to DNA signals

Bioengineer by Bioengineer
March 2, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Yusuke Sato

A research group at Tohoku University and Japan Advanced Institute of Science and Technology has developed a molecular robot consisting of biomolecules, such as DNA and protein. The molecular robot was developed by integrating molecular machines into an artificial cell membrane. It can start and stop its shape-changing function in response to a specific DNA signal.

This is the first time that a molecular robotic system has been able to recognize signals and control its shape-changing function. What this means is that molecular robots could, in the near future, function in a way similar to living organisms.

Using sophisticated biomolecules such as DNA and proteins, living organisms perform important functions. For example, white blood cells can chase bacteria by sensing chemical signals and migrating toward the target. In the field of chemistry and synthetic biology, elemental technologies for making various molecular machines, such as sensors, processors and actuators, are created using biomolecules.

A molecular robot is an artificial molecular system that is built by integrating molecular machines. The researchers believe that realization of such a system could lead to a significant breakthrough – a bio-inspired robot designed on a molecular basis.

The molecular robot developed by the research group is extremely small – about one millionth of a meter – similar in size to human cells. It consists of a molecular actuator, composed of protein, and a molecular clutch, composed of DNA (Fig. 1 A). The shape of the robot's body (artificial cell membrane) can be changed by the actuator, while the transmission of the force generated by the actuator can be controlled by the molecular clutch (bottom of Fig. 1 A).

The research group demonstrated through experiments that the molecular robot could start and stop the shape-changing behavior in response to a specific DNA signal (Fig. 1 B).

"With more than 20 chemicals at varying concentrations, it took us a year and a half to establish good conditions for working our molecular robots," says Associate Professor Shin-ichiro Nomura at Tohoku University's Graduate School of Engineering, who led the study. "It was exciting to see the robot shape-changing motion through the microscope. It meant our designed DNA clutch worked perfectly, despite the complex conditions inside the robot."

The realization of a molecular robot whose components are designed at a molecular level and who can function in a small and complicated environment, such as the human body, is expected to significantly expand the possibilities of robotics engineering. The results of this study could lead to technological developments that could help solve important medical issues – such as a treatment robot for live culturing cells and a monitoring robot for checking environmental pollution.

"The paper by Nomura and coworkers represents a major step towards the development of autonomous soft microrobots," says Dr. Friedrich Simmel, professor at the Technische Universität München. "Based on this achievement, in the future similar systems could be developed that display artificial phototaxis or chemotaxis, or similar 'intelligent' behavior."

###

The research results were published in Science Robotics – a science magazine published by the American Association for the Advancement of Science – on March 1, 2017. It was supported by the JSPS KAKENHI, AMED-CREST and Tohoku University-DIARE.

Media Contact

Shin-ichiro M. Nomura
[email protected]
@TohokuUniPR

http://www.tohoku.ac.jp/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Ammonium Molybdate Hydrogel Boosts Photoenergy Harvesting

October 21, 2025

Unlocking Your Microbiome: The Key to Lifelong Health

October 21, 2025

Ellagic Acid Protects Heart from Adrenaline Toxicity

October 21, 2025

Gender Variations in Pain Response to Cold Stress

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1268 shares
    Share 506 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    301 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    117 shares
    Share 47 Tweet 29

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ammonium Molybdate Hydrogel Boosts Photoenergy Harvesting

Unlocking Your Microbiome: The Key to Lifelong Health

Ellagic Acid Protects Heart from Adrenaline Toxicity

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.