• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

SFI Press publishes “Ex Machina: Coevolving Machines & the Origins of the Social Universe”

Bioengineer by Bioengineer
December 8, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Earth is full of examples of social behavior. When individual bacteria, insects, primates, and even self-driving cars make productive choices about their interactions with other individuals, that’s sociality. We can trace social behavior back to the unicellular organisms that became the building blocks for life on our planet. And humans, by becoming social, gained a great advantage in the evolutionary race for survival. If we could rewind Earth’s clock, would social behavior emerge yet again, and could we expect to find it elsewhere in the Universe? “Probably yes,” concludes a new book from SFI Press. 

Ex Machina: Coevolving Machines & the Origins of the Social Universe

Credit: Santa Fe Institute Press

Earth is full of examples of social behavior. When individual bacteria, insects, primates, and even self-driving cars make productive choices about their interactions with other individuals, that’s sociality. We can trace social behavior back to the unicellular organisms that became the building blocks for life on our planet. And humans, by becoming social, gained a great advantage in the evolutionary race for survival. If we could rewind Earth’s clock, would social behavior emerge yet again, and could we expect to find it elsewhere in the Universe? “Probably yes,” concludes a new book from SFI Press. 

In “Ex Machina: Coevolving Machines & the Origins of the Social Universe,” Santa Fe Institute’s External Professor John H. Miller (Carnegie Mellon University) melds ideas from the study of games, the fundamentals of computation, and Darwin’s theory of evolution to look at dynamic social systems through a computational lens. This novel approach, he writes, is like a time machine that allows us to observe and analyze the advent of social behavior — a question that cannot be answered using knowledge from one field alone.   

“This work, at its core, embraces SFI’s way of doing science,” says Miller, who is an economist and social scientist. “The most interesting and important scientific questions are often found in between traditional fields.” 

But when working across disciplines, even seemingly simple things — like defining social behavior — can be challenging, says Miller.  “Different scholars have very different notions about whether it can occur across species, if it requires special forms of intelligence, and so on.” His ultimate definition was fairly general — “a relief to dog owners everywhere,” he says — and it allows the possibility that social behavior could have emerged early in the history of life on Earth.

To answer questions about the emergence of sociality, Miller uses finite automata, which are simple computing machines that can respond to the inputs produced by other automata and evolve inside of a computer. The computations captured by the finite automata illustrate how much interaction and “thought” it takes for a system to become social, providing rich insights into the complex and multifaceted nature of social behavior. Miller began working on the core ideas presented in the book at SFI when he was a postdoc — the Institute’s first — more than thirty years ago. But only recently, aided by dramatic advances in computer power, could he realize the project.

The book became his path to discovery: a way for Miller to explore and understand, with a deeper vision, what it takes to make a system social. It also provided an opportunity to answer questions about the origins of social behavior, which Miller had raised in his 2007 book with Scott Page, “Complex Adaptive Systems.” 

This new project offers readers unique and technical insights into the emergence of social behavior in a system. His work reveals that systems can change from asocial to social, or vice versa, as they cross certain thresholds. “If agents are very limited in their ability to process information — to make choices or be ‘thoughtful’ — or in how much they interact with one another, the system falls into asocial outcomes,” says Miller. “Surprisingly, even though these systems are driven by small evolutionary changes, the movement from asocial to social (and back again) can happen very quickly — revolutions by evolution.” 

Understanding these thresholds of social behavior might not only explain how social life came to be, but also give us insights into social upheavals such as political movements and revolutions, the rapid acceptance of new social norms, and even the emergence or collapse of an entire social order. Such events can lead to profound and rapid transitions that ultimately define our collective future.

Book Details

Book: Ex Machina: Coevolving Machines and the Origins of the Social Universe
Written by John H. Miller
$9.99 (Paperback); free PDF
Publisher and imprint: The SFI Press Scholars Series
410 pages
Paperback ISBN: 978-1947864429
DOI: 10.37911/9781947864429
Publication Date: December 6, 2022
Available on Amazon.com



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025
blank

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Depression’s Impact on Blood Sugar Control

Polyions and Polyelectrolyte Complexes: Advancements for Brain Therapies

SLC4A11: Key Marker for Ovarian Cancer Treatment Response

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.