• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Serendipity broadens the scope for making graphite

Bioengineer by Bioengineer
July 24, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kate Putman

Curtin University researchers have unexpectedly discovered a new way to make crystalline graphite, an essential material used in the making of lithium ion batteries.

Described in a research paper published today in Nature’s Communications Materials, the new technique does not require the typical metal catalysts or special raw materials to turn carbon into crystalline graphite. Interestingly it was instead discovered by a research student in a lab, using an Atomic Absorption Spectrometer (AAS) – a piece of equipment, invented in Australia in the 1950s and developed to analyse the composition of liquids.

The Master-level student behind the discovery, Mr Jason Fogg, said that while the exact science behind why this new technique works is still to be confirmed, he believes it relates to the specific way the AAS heats the samples through short fast pulses.

“We used a special furnace that can heat the sample to 3000 degrees Celsius in seconds, something most furnaces cannot achieve,” Mr Fogg said.

“To put the temperature into perspective, 3000 degrees Celsius is equal to about half the surface temperature of the Sun.”

Dr Irene Suarez-Martinez, from Curtin’s School of Electrical Engineering, Computing and Mathematical Sciences, said that while graphite is the most stable form of carbon, most carbon materials stubbornly refuse to turn into graphite, which is why she was absolutely shocked to learn about Mr Fogg’s results.

“When he told me that he created perfect crystalline graphite from a known non-graphitising carbon material, I could not believe it, I was absolutely amazed at the results. It was only when we repeated the results three times that I was convinced,” Dr Suarez-Martinez said.

The most astonishing result involved the polymer polyvinylidene chloride (PVDC), which Dr Suarez-Martinez described as a ‘textbook example’ of a very stubborn material.

As the world’s demand for lithium ion batteries increases, scientists expect the commercial demand for crystalline graphite to also increase, and this research team is now determined to work out the precise details of why this special pulse heating method was so effective.

“Our hypothesis is that atmospheric oxygen soaks into the structure between pulses, and the rapid heating on the next pulses burns away the structures that would usually prevent graphite from forming,” Dr Suarez-Martinez said.

“We’re also interested to see if other complex carbons will also transform. Could this method be able to convert organic carbon material, such as food waste, into crystalline graphite?

“Right now we’re only able to create very small amounts of crystalline graphite, so we are far from being able to reproduce this process on a commercial-level. But we plan to explore our method and hypotheses further.”

###

The work was performed in collaboration with scientists Professor Peter Harris from the University of Reading in the United Kingdom and Professor Mauricio Terrones from the Pennsylvania State University in the USA, both helping the Curtin University research team confirm their results.

The full research paper Catalysis-free transformation of non-graphitising carbons into highly crystalline graphite will be found online here.

Media Contact
Lucien Wilkinson
[email protected]

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

Dual-Pathway Synthesis Builds Non-Adjacent Stereocenters

Dual-Pathway Synthesis Builds Non-Adjacent Stereocenters

November 13, 2025
Breakthrough “Ultra-Mild” Sequencing Technique Overcomes Key Limitations in Cancer DNA Methylation Analysis

Breakthrough “Ultra-Mild” Sequencing Technique Overcomes Key Limitations in Cancer DNA Methylation Analysis

November 13, 2025

Groundbreaking High-Precision Measurement of Potential Dynamics Achieved in Reactor-Grade Fusion Plasma

November 13, 2025

Stellar siblings: The Pleiades emerge from a colossal star-forming event

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rare Genetic Variants Linked to ADHD Risk

Enhancing Teamwork in Healthcare: A Visual Framework

Climate Change Reshapes Global Carbon Sinks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.